Разрушая веру в древнюю землю. Resident (Резидент) играть на деньги или бесплатно без регистрации онлайн — игровой автомат Resident Свойства конденсированных фаз

Гелий – подлинно благородный газ. Заставить его вступить в какие-либо реакции пока не удалось. Молекула гелия одноатомна.

По легкости этот газ уступает только водороду, воздух в 7,25 раза тяжелее гелия.

Гелий почти нерастворим в воде и других жидкостях. И точно так же в жидком гелии заметно не растворяется ни одно вещество.

Твердый гелий нельзя получить ни при каких температурах, если не повышать давление.

В истории открытия, исследования и применения этого элемента встречаются имена многих крупных физиков и химиков разных стран. Гелием интересовались, с гелием работали: Жансен (Франция), Локьер, Рамзай , Крукс, Резерфорд (Англия), Пальмиери (Италия), Кеезом, Камерлинг-Оннес (Голландия), Фейнман , Онсагер (США), Капица , Кикоин, Ландау (Советский Союз) и многие другие крупные ученые.

Неповторимость облика атома гелия определяется сочетанием в нем двух удивительных природных конструкций – абсолютных чемпионов по компактности и прочности. В ядре гелия, гелия-4, насыщены обе внутриядерные оболочки – и протонная, и нейтронная. Электронный дублет, обрамляющий это ядро, тоже насыщенный. В этих конструкциях – ключ к пониманию свойств гелия. Отсюда проистекают и его феноменальная химическая инертность и рекордно малые размеры его атома.

Огромна роль ядра атома гелия – альфа частицы в истории становления и развития ядерной физики. Если помните, именно изучение рассеяния альфа частиц привело Резерфорда к открытию атомного ядра. При бомбардировке азота альфа частицами было впервые осуществлено взаимопревращение элементов – то, о чем веками мечтали многие поколения алхимиков. Правда, в этой реакции не ртуть превратилась в золото, а азот в кислород, но это сделать почти так же трудно. Те же альфа частицы оказались причастны к открытию нейтрона и получению первого искусственного изотопа. Позже с помощью альфа частиц были синтезированы кюрий, берклий, калифорний, менделевий.

Мы перечислили эти факты лишь с одной целью – показать, что элемент №2 – элемент весьма необычный.

Земной гелий

Гелий – элемент необычный, и история его необычна. Он был открыт в атмосфере Солнца на 13 лет раньше, чем на Земле. Точнее говоря, в спектре солнечной короны была открыта ярко-желтая линия D, а что за ней скрывалось, стало достоверно известно лишь после того, как гелий извлекли из земных минералов, содержащих радиоактивные элементы.

Гелий на Солнце открыли француз Ж. Жансен, проводивший свои наблюдения в Индии 19 августа 1868 г., и англичанин Дж.H. Локьер – 20 октября того же года. Письма обоих ученых пришли в Париж в один день и были зачитаны на заседании Парижской Академии наук 26 октября с интервалом в несколько минут. Академики, пораженные столь странным совпадением, приняли постановление выбить в честь этого события золотую медаль.

В 1881 г. об открытии гелия в вулканических газах сообщил итальянский ученый Пальмиери. Однако его сообщение, впоследствии подтвержденное, мало кто из ученых принял всерьез. Вторично земной гелий был открыт Рамзаем в 1895 г.

В земной коре насчитывается 29 изотопов, при радиоактивном распаде которых образуются альфа частицы – высокоактивные, обладающие большой энергией ядра атомов гелия.

В основном земной гелий образуется при радиоактивном распаде урана-238, урана-235, тория и нестабильных продуктов их распада. Несравнимо меньшие количества гелия дает медленный распад самария-147 и висмута. Все эти элементы порождают только тяжелый изотоп гелия – 4 Не, чьи атомы можно рассматривать как останки альфа частиц, захороненные в оболочке из двух спаренных электронов – в электронном дублете. В ранние геологические периоды, вероятно, существовали и другие, уже исчезнувшие с лица Земли естественно радиоактивные ряды элементов, насыщавшие планету гелием. Одним из них был ныне искусственно воссозданный нептуниевый ряд.

По количеству гелия, замкнутого в горной породе или минерале, можно судить об их абсолютном возрасте. В основе этих измерений лежат законы радиоактивного распада: так, половина урана-238 за 4,52 млрд лет превращается в гелий и свинец.

Гелий в земной коре накапливается медленно. Одна тонна гранита, содержащая 2 г урана и 10 г тория, за миллион лет продуцирует всего 0,09 мг гелия – половину кубического сантиметра. В очень немногих богатых ураном и торием минералах содержание гелия довольно велико – несколько кубических сантиметров гелия на грамм. Однако доля этих минералов в естественном производстве гелия близка к нулю, так как они очень редки.

Природные соединения, в составе которых есть альфа активные изотопы, – это только первоисточник, но не сырье для промышленного получения гелия. Правда, некоторые минералы, обладающие плотной структурой – самородные металлы, магнетит, гранат, апатит, циркон и другие, – прочно удерживают заключенный в них гелий. Однако большинство минералов с течением времени подвергаются процессам выветривания, перекристаллизации и т.д., и гелий из них уходит.

Высвободившиеся из кристаллических структур гелиевые пузырьки отправляются в путешествие по земной коре. Очень незначительная часть их растворяется в подземных водах. Для образования более или менее концентрированных растворов гелия нужны особые условия, прежде всего большие давления. Другая часть кочующего гелия через поры и трещины минералов выходит в атмосферу. Остальные молекулы газа попадают в подземные ловушки, в которых скапливаются в течение десятков, сотен миллионов лет. Ловушками служат пласты рыхлых пород, пустоты которых заполняются газом. Ложем для таких газовых коллекторов обычно служат вода и нефть, а сверху их перекрывают газонепроницаемые толщи плотных пород.

Так как в земной коре странствуют и другие газы (главным образом метан, азот, углекислота), и притом в гораздо больших количествах, то чисто гелиевых скоплений не существует. Гелий в природных газах присутствует как незначительная примесь. Содержание его не превышает тысячных, сотых, редко – десятых долей процента. Большая (1,5...10%) гелиеносность метано-азотных месторождений – явление крайне редкое.

Природные газы оказались практически единственным источником сырья для промышленного получения гелия. Для отделения от прочих газов используют исключительную летучесть гелия, связанную с его низкой температурой сжижения. После того как все прочие компоненты природного газа сконденсируются при глубоком охлаждении, газообразный гелий откачивают. Затем его очищают от примесей. Чистота заводского гелия достигает 99,995%.

Запасы гелия на Земле оцениваются в 5·10 14 м 3 ; судя же по вычислениям, его образовалось в земной коре за 2 млрд лет в десятки раз больше. Такое расхождение теории с практикой вполне объяснимо. Гелий – легкий газ и, подобно водороду (хотя и медленнее), не улетучивается из атмосферы в мировое пространство. Вероятно, за время существования Земли гелий нашей планеты неоднократно обновлялся – старый улетучивался в космос, а вместо него в атмосферу поступал свежий – «выдыхаемый» Землей.

В литосфере гелия по меньшей мере в 200 тыс. раз больше, чем в атмосфере; еще больше потенциального гелия хранится в «утробе» Земли – в альфа активных элементах. Но общее содержание этого элемента в Земле и атмосфере невелико. Гелий – редкий и рассеянный газ. На 1 кг земного материала приходится всего 0,003 мг гелия, а содержание его в воздухе – 0,00052 объемного процента. Столь малая концентрация не позволяет пока экономично извлекать гелий из воздуха.

Гелий во Вселенной

Недра и атмосфера нашей планеты бедны гелием. Но это не значит, что его мало повсюду во Вселенной. По современным подсчетам 76% космической массы приходится на водород и 23% на гелий; на все прочие элементы остается только 1%! Таким образом, мировую материю можно назвать водородно-гелиевой. Эти два элемента главенствуют в звездах, планетарных туманностях и межзвездном газе.

Рис. 1. Кривые распространенности элементов на Земле (вверху) и в космосе.
«Космическая» кривая отражает исключительную роль водорода и гелия в мироздании и особое значение гелиевой группировки в строении атомного ядра. Наибольшую относительную распространенность имеют те элементы и те их изотопы, массовое число которых делится на четыре: 16 О, 20 Ne, 24 Mg и т.д.

Вероятно, все планеты солнечной системы содержат радиогенный (образовавшийся при альфа распаде) гелий, а крупные – и реликтовый гелий из космоса. Гелий обильно представлен в атмосфере Юпитера: по одним данным его там 33%, по другим – 17%. Это открытие легло в основу сюжета одного из рассказов известного ученого и писателя-фантаста А. Азимова. В центре повествования – план (возможно, осуществимый в будущем) доставки гелия с Юпитера, а то и заброски на ближайший спутник этой планеты – Юпитер V – армады кибернетических машин на криотронах (о них – ниже). Погрузившись в жидкий гелий атмосферы Юпитера (сверхнизкие температуры и сверхпроводимость – необходимые условия для работы криотронов), эти машины превратят Юпитер V в мозговой центр солнечной системы...

Происхождение звездного гелия было объяснено в 1938 г. немецкими физиками Бете и Вейцзекером. Позже их теория получила экспериментальное подтверждение и уточнение с помощью ускорителей элементарных частиц. Суть ее в следующем.

Ядра гелия синтезируются при звездных температурах из протонов в результате термоядерных процессов, высвобождающих 175 млн киловатт-часов энергии на каждый килограмм гелия.

Разные циклы реакций могут привести к синтезу гелия.

В условиях не очень горячих звезд, таких, как наше Солнце, преобладает, по-видимому, протонно-протонный цикл. Он складывается из трех последовательно сменяющихся превращений. Вначале соединяются на огромных скоростях два протона с образованием дейтрона – конструкции из протона и нейтрона; при этом отделяются позитрон и нейтрино. Далее соединяются дейтрон с протоном в легкий гелий с испусканием гамма кванта. Наконец, реагируют два ядра 3 Не, преобразуясь в альфа частицу и два протона. Альфа-частица, обзаведясь двумя электронами, станет потом атомом гелия.

Тот же конечный результат дает более быстрый углеродно-азотный цикл, значение которого в условиях Солнца не очень велико, но на более горячих, чем Солнце, звездах роль этого цикла усиливается. Он складывается из шести ступеней – реакций. Углерод играет здесь роль катализатора процесса слияния протонов. Энергия, выделяемая в ходе этих превращений, такая же, как и при протонно-протонном цикле – 26,7 МэВ на один атом гелия.

Реакция синтеза гелия – основа энергетической деятельности звезд, их свечения. Следовательно, синтез гелия можно считать праотцом всех реакций в природе, первопричиной жизни, света, тепла и метеорологических явлений на Земле.

Гелий не всегда бывает конечным продуктом звездных синтезов. По теории профессора Д.А. Франк-Каменецкого, при последовательном слиянии ядер гелия образуются 3 Be, 12 C, 16 O, 20 Ne, 24 Mg, а захват этими ядрами протонов приводит к возникновению других ядер. Для синтеза ядер тяжелых элементов вплоть до трансурановых требуются исключительные сверхвысокие температуры, которые развиваются на неустойчивых «новых» и «сверхновых» звездах.

Известный советский химик А.Ф. Капустинский называл водород и гелий протоэлементами – элементами первичной материи. Не в этой ли первичности скрыто объяснение особого положения водорода и гелия в периодической системе элементов, в частности того факта, что первый период по существу лишен периодичности, характерной для прочих периодов?

Самый, самый...

Атом гелия (он же молекула) – прочнейшая из молекулярных конструкций. Орбиты двух его электронов совершенно одинаковы и проходят предельно близко от ядра. Чтобы оголить ядро гелия, нужно затратить рекордно большую энергию – 78,61 МэВ. Отсюда – феноменальная химическая пассивность гелия.

За последние 15 лет химикам удалось получить более 150 химических соединений тяжелых благородных газов (о соединениях тяжелых благородных газов будет рассказано в статьях «Криптон» и «Ксенон»). Однако инертность гелия остается, как и прежде, вне подозрений.

Вычисления показывают, что если бы и был найден путь получения, скажем фторида или окисла гелия, то при образовании они поглотили бы так много энергии, что получившиеся молекулы были бы «взорваны» этой энергией изнутри.

Молекулы гелия неполярны. Силы межмолекулярного взаимодействия между ними крайне невелики – меньше, чем в любом другом веществе. Отсюда – самые низкие значения критических величин, наинизшая температура кипения, наименьшие теплоты испарения и плавления. Что касается температуры плавления гелия, то при нормальном давлении ее вообще нет. Жидкий гелий при сколь угодно близкой к абсолютному нулю температуре не затвердевает, если, помимо температуры, на него но действует давление в 25 или больше атмосфер. Второго такого вещества в природе нет.

Нет также другого газа, столь ничтожно растворимого в жидкостях, особенно полярных, и так мало склонного к адсорбции, как гелий. Это наилучший среди газов проводник электричества и второй, после водорода, проводник тепла. Его теплоемкость очень велика, а вязкость мала.

Поразительно быстро проникает гелий сквозь тонкие перегородки из некоторых органических полимеров, фарфора, кварцевого и боросиликатного стекла. Любопытно, что сквозь мягкое стекло гелий диффундирует в 100 раз медленнее, чем сквозь боросиликатное. Гелий может проникать и через многие металлы. Полностью непроницаемы для него лишь железо и металлы платиновой группы, даже раскаленные.

На принципе избирательной проницаемости основан новый метод извлечения чистого гелия из природного газа.

Исключительный интерес проявляют ученые к жидкому гелию. Во-первых, это самая холодная жидкость, в которой к тому же не растворяется заметно ни одно вещество. Во-вторых, это самая легкая из жидкостей с минимальной величиной поверхностного натяжения.

При температуре 2,172°К происходит скачкообразное изменение свойств жидкого гелия. Образующаяся разновидность условно названа гелием II. Гелий II кипит совсем не так, как прочие жидкости, он не бурлит при кипении, поверхность его остается совершенно спокойной. Гелий II проводит тепло в 300 млн раз лучше, чем обычный жидкий гелий (гелий I). Вязкость гелия II практически равна нулю, она в тысячу раз меньше вязкости жидкого водорода. Поэтому гелий II обладает сверхтекучестью – способностью вытекать без трения через капилляры сколь угодно малого диаметра.

Другой стабильный изотоп гелия 3 Не переходит в сверхтекучее состояние при температуре, отстоящей от абсолютного пуля всего на сотые доли градусов. Сверхтекучие гелий-4 и гелий-3 называют квантовыми жидкостями: в них проявляются квантово-механические эффекты еще до их отвердевания. Этим объясняется весьма детальная изученность жидкого гелия. Да и производят его ныне немало – сотни тысяч литров в год. А вот твердый гелий почти не изучен: велики экспериментальные трудности исследования этого самого холодного тела. Бесспорно, пробел этот будет заполнен, так как физики ждут много нового от познания свойств твердого гелия: ведь он тоже квантовое тело.

Инертный, но очень нужный

В конце прошлого века английский журнал «Панч» поместил карикатуру, на которой гелий был изображен хитро подмигивающим человечком – жителем Солнца. Текст под рисунком гласил: «Наконец-то меня изловили и на Земле! Это длилось достаточно долго! Интересно знать, сколько времени пройдет, пока они догадаются, что делать со мной?»

Действительно, прошло 34 года со дня открытия земного гелия (первое сообщение об этом было опубликовано в 1881 г.), прежде чем он нашел практическое применение. Определенную роль здесь сыграли оригинальные физико-технические, электрические и в меньшей мере химические свойства гелия, потребовавшие длительного изучения. Главными же препятствиями были рассеянность и высокая стоимость элемента №2.

Первыми гелий применили немцы. В 1915 г. они стали наполнять им свои дирижабли, бомбившие Лондон. Вскоре легкий, но негорючий гелий стал незаменимым наполнителем воздухоплавательных аппаратов. Начавшийся в середине 30-х годов упадок дирижаблестроения повлек некоторый спад в производстве гелия, но лишь на короткое время. Этот газ все больше привлекал к себе внимание химиков, металлургов и машиностроителей.

Многие технологические процессы и операции нельзя вести в воздушной среде. Чтобы избежать взаимодействия получаемого вещества (или исходного сырья) с газами воздуха, создают специальные защитные среды; и нет для этих целей более подходящего газа, чем гелий.

Инертный, легкий, подвижный, хорошо проводящий тепло гелий – идеальное средство для передавливания из одной емкости в другую легко воспламеняемых жидкостей и порошков; именно эти функции выполняет он в ракетах и управляемых снарядах. В гелиевой защитной среде проходят отдельные стадии получения ядерного горючего. В контейнерах, заполненных гелием, хранят и транспортируют тепловыделяющие элементы ядерных реакторов.

С помощью особых течеискателей, действие которых основано на исключительной диффузионной способности гелия, выявляют малейшие возможности утечки в атомных реакторах и других системах, находящихся под давлением или вакуумом.

Последние годы ознаменованы повторным подъемом дирижаблестроения, теперь на более высокой научно-технической основе. В ряде стран построены и строятся дирижабли с гелиевым наполнением грузоподъемностью от 100 до 3000 т. Они экономичны, надежны и удобны для транспортировки крупногабаритных грузов, таких, как плети газопроводов, нефтеочистительные установки, опоры линий электропередач и т.п. Наполнение из 85% гелия и 15% водорода огнебезопасно и только на 7% снижает подъемную силу в сравнении с водородным наполнением.

Начали действовать высокотемпературные ядерные реакторы нового типа, в которых теплоносителем служит гелий.

В научных исследованиях и в технике широко применяется жидкий гелий. Сверхнизкие температуры благоприятствуют углубленному познанию вещества и его строения – при более высоких температурах тонкие детали энергетических спектров маскируются тепловым движением атомов.

Уже существуют сверхпроводящие соленоиды из особых сплавов, создающие при температуре жидкого гелия сильные магнитные поля (до 300 тыс. эрстед) при ничтожных затратах энергии.

При температуре жидкого гелия многие металлы и сплавы становятся сверхпроводниками. Сверхпроводниковые реле – криотроны все шире применяются в конструкциях электронно-вычислительных машин. Они просты, надежны, очень компактны. Сверхпроводники, а с ними и жидкий гелий становятся необходимыми для электроники. Они входят в конструкции детекторов инфракрасного излучения, молекулярных усилителей (мазеров), оптических квантовых генераторов (лазеров), приборов для измерения сверхвысоких частот.

Конечно, этими примерами не исчерпывается роль гелия в современной технике. Но если бы не ограниченность природных ресурсов, не крайняя рассеянность гелия, он нашел бы еще множество применений. Известно, например, что при консервировании в среде гелия пищевые продукты сохраняют свой первоначальный вкус и аромат. Но «гелиевые» консервы пока остаются «вещью в себе», потому что гелия не хватает и применяют его лишь в самых важных отраслях промышленности и там, где без него никак не обойтись. Поэтому особенно обидно сознавать, что с горючим природным газом через аппараты химического синтеза, топки и печи проходят и уходят в атмосферу намного большие количества гелия, чем те, что добываются из гелиеносных источников.

Сейчас считается выгодным выделять гелий только в тех случаях, если его содержание в природном газе не меньше 0,05%. Запасы такого газа все время убывают, и не исключено, что они будут исчерпаны еще до конца нашего века. Однако, проблема «гелиевой недостаточности» к этому времени, вероятно, будет решена – частично за счет создания новых, более совершенных методов разделения газов, извлечения из них наиболее ценных, хотя и незначительных по объему фракций, и частично благодаря управляемому термоядерному синтезу. Гелий станет важным, хотя и побочным, продуктом деятельности «искусственных солнц».

Изотопы гелия

В природе существуют два стабильных изотопа гелия: гелий-3 и гелий-4. Легкий изотоп распространен на Земле в миллион раз меньше, чем тяжелый. Это самый редкий из стабильных изотопов, существующих на нашей планете. Искусственным путем получены еще три изотопа гелия. Все они радиоактивны. Период полураспада гелия-5 – 2,4·10 –21 секунды, гелия-6 – 0,83 секунды, гелия-8 – 0,18 секунды. Самый тяжелый изотоп, интересный тем, что в его ядрах на один протон приходится три нейтрона, впервые подучен в Дубне в 60-х годах. Попытки получить гелий-10 пока были неудачны.

Последний твердый газ

В жидкое и твердое состояние гелий был переведен самым последним из всех газов. Особые сложности сжижения и отверждения гелия объясняются строением его атома и некоторыми особенностями физических свойств. В частности, гелий, как и водород, при температуре выше – 250°C, расширяясь, не охлаждается, а нагревается. С другой стороны, критическая температура гелия крайне низка. Именно поэтому жидкий гелий впервые удалось получить лишь в 1908, а твердый – в 1926 г.

Гелиевый воздух

Воздух, в котором весь азот или большая его часть заменена гелием, сегодня уже не новость. Его широко используют на земле, под землей и под водой.

Гелиевый воздух втрое легче и намного подвижнее обычного воздуха. Он активнее ведет себя в легких – быстро подводит кислород и быстро эвакуирует углекислый газ. Вот почему гелиевый воздух дают больным при расстройствах дыхания и некоторых операциях. Он снимает удушья, лечит бронхиальную астму и заболевания гортани.

Дыхание гелиевым воздухом практически исключает азотную эмболию (кессонную болезнь), которой при переходе от повышенного давления к нормальному подвержены водолазы и специалисты других профессий, работа которых проходит в условиях повышенного давления. Причина этой болезни – довольно значительная, особенно при повышенном давлении, растворимость азота в крови. По мере уменьшения давления он выделяется в виде газовых пузырьков, которые могут закупорить кровеносные сосуды, повредить нервные узлы... В отличие от азота, гелий практически нерастворим в жидкостях организма, поэтому он не может быть причиной кессонной болезни. К тому же гелиевый воздух исключает возникновение «азотного наркоза», внешне сходного с алкогольным опьянением.

Рано или поздно человечеству придется научиться подолгу жить и работать на морском дне, чтобы всерьез воспользоваться минеральными и пищевыми ресурсами шельфа. А на больших глубинах, как показали опыты советских, французских и американских исследователей, гелиевый воздух пока незаменим. Биологи доказали, что длительное дыхание гелиевым воздухом не вызывает отрицательных сдвигов в человеческом организме и не грозит изменениями в генетическом аппарате: гелиевая атмосфера не влияет на развитие клеток и частоту мутаций. Известны работы, авторы которых считают гелиевый воздух оптимальной воздушной средой для космических кораблей, совершающих длительные полеты во Вселенную. Но пока за пределы земной атмосферы искусственный гелиевый воздух еще не поднимался.

Гелий – химический элемент с символом He и атомным номером 2. Это бесцветное вещество, не имеющее запаха и вкуса, нетоксичный, инертный, одноатомный газ, первый в группе благородных газов в периодической таблице. Его точка кипения является самой низкой среди всех элементов. После водорода, гелий является вторым самым легким и вторым наиболее распространенным элементом в наблюдаемой Вселенной, присутствуя на уровне около 24% от общей массы элементов, что более чем в 12 раз превышает массу всех более тяжелых элементов вместе взятых. Его изобилие связано с очень высокой энергией ядерной связи (на нуклон) гелия-4 по отношению к следующим трем элементам после гелия. Эта энергия связи гелия-4 также объясняет, почему гелий является продуктом как ядерного синтеза, так и радиоактивного распада. Большинство гелия во Вселенной находится в форме гелий-4, и, как полагают, он сформировался во время Большого взрыва. Большое количество нового гелия создается путем ядерного синтеза водорода в звездах. Гелий назван в честь греческого бога Солнца, Гелиоса. Гелий впервые был обнаружен как неизвестная желтая сигнатура спектральной линии в солнечном свете во время солнечного затмения в 1868 году Жоржем Райетом , капитаном К.Т. Хейгом, Норманом Р. Погсоном и лейтенантом Джоном Хершелем.

Это наблюдение было впоследствии подтверждено французским астрономом Жюлем Янссеном . Янссену часто приписывают обнаружение этого элемента наряду с Норманном Локьером. Янссен записал спектральную линию гелия во время солнечного затмения 1868 года, в то время как Локьер наблюдал это явление из Британии. Локьер первым предложил, что эта линия связана с новым элементом, которому он и дал название гелий. Формальное открытие элемента было сделано в 1895 году двумя шведскими химиками, Пером Теодором Кливом и Нильсом Абрахамом Ланглетом, которые обнаружили гелий, исходящий из уранового рудного клевеита. В 1903 году, большие запасы гелия были обнаружены на месторождениях природного газа в некоторых частях Соединенных Штатов. На сегодняшний день, США является самым крупным поставщиком газа. Жидкий гелий используется в криогениках (его наибольшее единственное применение, поглощающее около четверти производства), в частности, при охлаждении сверхпроводящих магнитов, причем основное коммерческое применение связано с МРТ-сканерами. Другие промышленные применения гелия – в качестве газа для повышения давления и продувки в качестве защитной атмосферы для дуговой сварки и в таких процессах, как выращивание кристаллов для изготовления кремниевых пластин. Известное, но второстепенное использование гелия – в качестве подъемного газа для воздушных шаров и дирижаблей. Как и в случае любого газа, плотность которого отличается от плотности воздуха, вдыхание небольшого объема гелия временно изменяет тембр и качество человеческого голоса. В научных исследованиях, поведение двух жидких фаз гелия-4 (гелий I и гелий II) важно для исследователей, изучающих квантовую механику (в частности, свойство сверхтекучести), и для ученых, изучающих такие явления, как сверхпроводимость, в материи вблизи абсолютного нуля. На Земле гелий относительно редок – 5,2 ч.н.м. по объему в атмосфере. Сегодня большинство присутствующего на Земле гелия создается в ходе естественного радиоактивного распада тяжелых радиоактивных элементов (торий и уран, хотя есть и другие примеры), поскольку альфа-частицы, испускаемые такими распадами, состоят из ядер гелия-4. Этот радиогенный гелий захватывается природным газом в концентрациях до 7% по объему, из которого он извлекается коммерчески путем низкотемпературного разделения, называемого фракционной перегонкой. Раньше наземный гелий был невозобновляемым ресурсом, потому что, однажды выпущенный в атмосферу, он легко мог переместиться в космос, и считалось, что этот элемент является все более дефицитным. Однако, недавние исследования показывают, что гелий, образовавшийся на Земле в результате радиоактивного распада, может собираться в запасах природного газа в больших количествах, чем ожидалось, в некоторых случаях высвобождаемых вулканической активностью .

История

Научные открытия

Первое свидетельство о существовании гелия было сделано 18 августа 1868 года. В спектре хромосферы Солнца наблюдалась ярко-желтая линия с длиной волны 587,49 нанометров. Эта линия была обнаружена французским астрономом Жюлем Янссеном во время полного солнечного затмения в Гунтуре, Индия. Первоначально эта линия считалась натрием. 20 октября того же года, английский астроном Норман Локьер наблюдал желтую линию в спектре Солнца, которую он назвал линией D3 Fraunhofer, потому что она находилась вблизи известных линий D1 и D2 натрия. Ученый пришел к выводу, что эта линия была вызвана элементом Солнца, неизвестным на Земле. Локьер и английский химик Эдвард Франкленд назвали элемент греческим словом, обозначающим солнце, ἥλιος (helios). В 1881 году итальянский физик Луиджи Палмиери впервые обнаружил гелий на Земле через его спектральную линию D3, при анализе материала, который был сублимирован во время извержения горы Везувий. 26 марта 1895 года шотландский химик сэр Уильям Рамсей изолировал гелий на Земле, обработав минеральный клевеит (целый ряд уранинитов с не менее 10% редкоземельных элементов) минеральными кислотами. Рамсей искал аргон, но после отделения азота и кислорода от газа, выделяемого серной кислотой, он заметил ярко-желтую линию, которая соответствовала линии D3, наблюдаемой в спектре Солнца. Эти образцы были идентифицированы как гелий Локкиром и британским физиком Уильямом Круксом. Гелий был независимо изолирован от клевеита в том же году химиками Пером Теодором Клеве и Абрахамом Ланглетом в Уппсале, Швеция, которые собрали достаточно газа для точного определения его атомного веса. Гелий был также изолирован американским геохимиком Уильямом Фрэнсисом Хиллебрандом до открытия Рамсея, когда он заметил необычные спектральные линии при испытании образца минерального уранинита. Гиллебранд, однако, приписывал эти линии азоту . В 1907 году Эрнест Резерфорд и Томас Ройдс продемонстрировали, что альфа-частицы являются ядрами гелия, позволяя частицам проникать сквозь тонкую стеклянную стенку эвакуированной трубки, а затем создавая разряд в трубке для изучения спектров нового газа внутри. В 1908 году гелий был впервые сжижен голландским физиком Хайке Камерлингхом Оннесом путем охлаждения газа до температуры менее одного кельвина. Он попытался сделать газ твердым, еще больше снизив температуру, но потерпел неудачу, потому что гелий не затвердевает при атмосферном давлении. Студент Оннеса, Виллем Хендрик Кеесом, в конце концов, смог вызвать затвердевание 1 см3 гелия в 1926 году, добавив дополнительное внешнее давление . В 1938 году российский физик Петр Леонидович Капица обнаружил, что гелий-4 практически не имеет вязкости при температурах около абсолютного нуля, явление, которое теперь называется сверхтекучестью . Это явление связано с конденсацией Бозе-Эйнштейна. В 1972 году такое же явление наблюдалось относительно гелия-3, но при температурах, значительно более близких к абсолютному нулю, американскими физиками Дугласом Д. Ошероффом, Дэвидом М. Ли и Робертом К. Ричардсоном. Считается, что явление в гелии-3 связано со спариванием фермионов гелия-3 с образованием бозонов, по аналогии с куперовскими парами электронов, производящими сверхпроводимость.

Извлечение и использование

После операции по бурению нефтяных скважин в 1903 году в Декстере, штат Канзас, был произведен газовый гейзер, который не горел, и государственный геолог штата Канзас, Эразм Хауорт, собрал образцы улетучивающегося газа и взял их в Университет Канзаса в Лоуренсе, где, при помощи химиков Гамильтона Кади и Дэвида Макфарланда, он обнаружил, что газ состоял из 72% азота, 15% метана (горючий процент только с достаточным количеством кислорода), 1% водорода и 12% - неидентифицируемого газа. При дальнейшем анализе, Кади и Макфарланд обнаружили, что 1,84% образца газа представляет собой гелий. Это показало, что, несмотря на его общую редкость на Земле, гелий концентрировался в больших количествах под американскими Великими равнинами, доступный для добычи в качестве побочного продукта природного газа . Это позволило Соединенным Штатам стать ведущим мировым поставщиком гелия. Следуя предложению сэра Ричарда Трелфалла, военно-морской флот Соединенных Штатов спонсировал три небольших экспериментальных гелиевых завода во время Первой мировой войны. Цель заключалась в снабжении воздушных шаров с заграждением невоспламеняющимся газом, более легким, чем воздух. В ходе этой программы, было произведено 5700 м3 (200 000 куб. футов) 92% гелия, хотя ранее было получено менее одного кубического метра этого газа . Часть этого газа использовалась в первом в мире гелиевом дирижабле, C-7 ВМС США, который совершил свой первый рейс от Хэмптон роудс, штат Вирджиния, в Боллинг-Филд в Вашингтоне, округ Колумбия, 1 декабря 1921 года, почти за два года до постройки первого жёсткого дирижабля, заполненного гелием, в сентябре 1923 года на заводе Shenandoah. Хотя процесс экстракции с использованием низкотемпературного сжижения газа не был развит в то время, во время Первой мировой войны, производство продолжалось. Гелий, в основном, использовался в качестве подъемного газа в летательных аппаратах более легких, чем воздух. Во время Второй мировой войны, спрос на гелий в качестве подъемного газа и для дуговой сварки с помощью экранирования увеличился. Гелиевый масс-спектрометр также имел большое значение в Манхеттенском проекте (кодовое название работы по созданию первой атомной бомбы в США в период второй мировой войны). Правительство Соединенных Штатов создало Национальный резерв гелия в 1925 году в Амарилло, штат Техас, с целью снабжения военных дирижаблей во время войны и коммерческих дирижаблей в мирное время. Из-за Закона о контроле гелия (1927), который запретил экспорт редкого гелия, на производство которого тогда имели монополию США, вместе с запретительной стоимостью газа, Гинденбург, как и все немецкие Цеппелины, был вынужден использовать водород в качестве подъемного газа. Рынок гелия после Второй мировой войны был подавлен, но его запасы были расширены в 1950-х годах, чтобы обеспечить поставку жидкого гелия в качестве хладагента для создания кислородно-водородного ракетного топлива (помимо других целей) во время «космической гонки» и холодной войны. Использование гелия в Соединенных Штатах в 1965 году было более чем в восемь раз больше пикового потребления военного времени. После «поправок по гелийским актам 1960 года» (публичное право 86-777), Бюро Соединенных Штатов Америки организовало пять частных заводов по восстановлению гелия из природного газа. Для этой программы по сохранению гелия, Бюро построило 425-мильный (684-километровый) трубопровод из Буштона, штат Канзас, для соединения этих заводов с частично обедненным правительством газовым месторождением Клиффсайд вблизи Амарилло, штат Техас. Эту смесь гелий-азот впрыскивали и хранили в газовом поле Клиффсайд до тех пор, пока в ней не возникала необходимость, и за это время она еще больше очищалась. К 1995 году было собрано миллиард кубометров газа, а резерв составлял 1,4 млрд. долл. США в долгах, побудив Конгресс Соединенных Штатов в 1996 году ликвидировать резерв. «Закон о приватизации гелия 1996 года» (публичное право 104-273) вынуждает Департамент внутренних дел Соединенных Штатов высвободить резерв, и начать продажи с 2005 года. Гелий, произведенный между 1930 и 1945 годами, имел приблизительно 98,3% чистоту (2% азота), что было достаточным для дирижаблей. В 1945 году для сварки было получено небольшое количество 99,9% гелия. К 1949 году было доступно коммерческое количество гелия класса А 99,95%. В течение многих лет, Соединенные Штаты производили более 90% коммерчески используемого гелия в мире, а добывающие установки в Канаде, Польше, России и других странах производили остальное. В середине 1990-х годов начал функционировать новый завод в Аржеве, Алжир, производящий 17 миллионов кубических метров (600 миллионов кубических футов гелия), с достаточным объемом добычи, чтобы покрыть все потребности Европы. Между тем, к 2000 году потребление гелия в США увеличилось до более 15 миллионов кг в год. В 2004-2006 годах были построены дополнительные заводы в Рас-Лаффане, Катаре и Скикде, Алжир. Алжир быстро стал вторым ведущим производителем гелия. За это время увеличилось как потребление гелия, так и затраты на производство гелия . С 2002 по 2007 гг. цены на гелий удвоились. По состоянию на 2012 год, на Национальный резерв гелия Соединенных Штатов приходилось 30 процентов мировых запасов гелия. Ожидается, что в 2018 году резерв закончится. Несмотря на это, предлагаемый законопроект в Сенате Соединенных Штатов позволит резерву продолжать продавать газ. Другие крупные запасы гелия находились в штате Хьюготон в Канзасе, США, и близлежащих газовых месторождениях в Канзасе, а также в выступах Техаса и Оклахомы. Новые гелиевые заводы должны были открыться в 2012 году в Катаре, в России и в штате Вайоминг в США, но не ожидалось, что они уменьшат дефицит. В 2013 году в Катаре началось строительство крупнейшей в мире установки гелия. 2014 год был широко признан годом избыточного предложения в гелиевом бизнесе, после многих лет нехватки.

Характеристики

Гелий-атом

Гелий в квантовой механике

В перспективе квантовой механики, гелий является вторым простейшим атомом для моделирования, следуя за атомом водорода. Гелий состоит из двух электронов на атомных орбиталях, окружающих ядро, содержащее два протона и (обычно) два нейтрона. Как и в механике Ньютона, никакая система, состоящая из более чем двух частиц, не может быть решена с помощью точного аналитического математического подхода, и гелий не является исключением. Таким образом, требуются численные математические методы, даже для решения системы, состоящей из одного ядра и двух электронов. Такие методы вычислительной химии были использованы для создания квантово-механической картины электронного связывания гелия, точность которой составляет менее 2% от правильного значения на нескольких вычислительных этапах. Такие модели показывают, что каждый электрон в гелии частично экранирует одно ядро от другого, так что эффективный ядерный заряд Z, который видит каждый электрон, составляет около 1,69 единицы, а не 2 заряда классического «голого» ядра гелия.

Относительная стабильность ядра гелия-4 и электронная оболочка

Ядро атома гелия-4 идентично альфа-частице. Эксперименты по высокоэнергетическому электронному рассеянию показывают, что его заряд экспоненциально уменьшается с максимума в центральной точке, точно так же, как и плотность заряда собственного электронного облака гелия. Эта симметрия отражает аналогичную основную физику: пара нейтронов и пара протонов в ядре гелия подчиняются тем же квантовым механическим правилам, что и пара электронов гелия (хотя ядерные частицы подвержены другому ядерному связывающему потенциалу), так что все эти фермионы полностью занимают 1s-орбитали в парах, причем ни один из них не обладает орбитальным моментом, и каждый из них отменяет собственный спин другого. Добавление любой другой из этих частиц потребует углового момента и высвободит существенно меньшую энергию (фактически, ни одно ядро с пятью нуклонами не стабильно). Таким образом, эта схема энергетически чрезвычайно устойчива для всех этих частиц, и эта стабильность объясняет многие важные факты о гелии в природе. Например, стабильность и низкая энергия состояния электронного облака в гелии объясняют химическую инертность элемента, а также отсутствие взаимодействия атомов гелия друг с другом, создавая самые низкие температуры плавления и кипения всех элементов. Подобным же образом, особая энергетическая стабильность ядра гелия-4, создаваемая схожими эффектами, объясняет легкость производства гелия-4 в атомных реакциях, которые включают либо выброс тяжелых металлов, либо их синтез. Некоторое количество стабильного гелия-3 (2 протона и 1 нейтрон) образуется в реакциях синтеза из водорода, но это количество очень мало по сравнению с высокочувствительной энергией гелия-4. Необычная стабильность ядра гелия-4 также важна космологически: она объясняет тот факт, что в первые несколько минут после Большого Взрыва, во время создания «мешанины из свободных протонов и нейтронов», которые первоначально были созданы в соотношении примерно 6: 1, охлажденной до такой степени, что стало возможным ядерное связывание, почти все первые сформированные составные атомные ядра были ядрами гелия-4. связывание гелия-4 было настолько плотным, что производство гелия-4 потребляло почти все свободные нейтроны за несколько минут, прежде чем они могли быть подвергнуты бета-распаду, а также оставляя малое количество для образования более тяжелых атомов, таких как литий, бериллий или бор. Ядерное связывание гелия-4 на нуклон сильнее, чем у любого из этих элементов, и, таким образом, когда был образован гелий, для создания элементов 3, 4 и 5 не было энергичного привода. Для гелия было мало энергетически выгодно сплавляться в следующий элемент с меньшей энергией на нуклон, углерод. Однако, из-за отсутствия промежуточных элементов, этот процесс требует трех ядер гелия, поражающих друг друга почти одновременно. Таким образом, в течение нескольких минут после Большого взрыва не было времени для образования значительного количества углерода, прежде чем ранняя расширяющаяся Вселенная не охладилась до такой температуры и давления, при которой слияние гелия с углеродом было бы невозможно. Из-за этого, в ранней Вселенной было похожее на сегодняшнее соотношение водорода / гелия (3 части водорода к 1 части гелия-4 по массе), причем почти все нейтроны во вселенной захвачены гелием-4. Все более тяжелые элементы (включая элементы, которые необходимы для скалистых планет, таких как Земля, и для углеродной или других форм жизни), таким образом, были созданы после Большого взрыва в звездах, которые были достаточно горячими, чтобы сплавить сам гелий. Все элементы, кроме водорода и гелия, сегодня составляют лишь 2% от массы атомного вещества во Вселенной. Гелий-4, напротив, составляет около 23% от обычной материи Вселенной – почти все обычное вещество, которое не является водородом.

Газовые и плазменные фазы

Гелий является вторым наименее реактивным благородным газом после неона и, следовательно, вторым наименее реактивным из всех элементов. Он инертен и моноатомичен во всех стандартных условиях. Из-за относительно низкой молярной (атомной) массы гелия, его теплопроводность, удельная теплоемкость и скорость звука в газовой фазе больше, чем у любого другого газа, кроме водорода. По этим причинам и из-за небольшого размера одноатомных молекул гелия, гелий диффундирует через твердые частицы со скоростью, в три раза превышающей скорость воздуха и составляющей около 65% от скорости водорода. Гелий является наименее водорастворимым одноатомным газом и одним из менее водорастворимых газов (CF4, SF6 и C4F8 имеют меньшую растворимость в мольной фракции: 0,3802, 0,4394 и 0,2372 x2 / 10-5 соответственно против 0,70797 x2 / 10-5 у гелия), кроме того, показатель преломления гелия ближе к единице, чем показатель преломления любого другого газа . Гелий имеет отрицательный коэффициент Джоуля-Томсона при нормальной температуре окружающей среды, что означает, что он нагревается, когда ему дают свободно расширяться. Только ниже своей температуры инверсии Джоуля-Томсона (примерно от 32 до 50 К при 1 атмосфере), гелий охлаждается при свободном расширении. После переохлаждения ниже этой температуры, гелий можно сжижать за счет охлаждения. Большинство внеземного гелия находится в плазменном состоянии и имеет свойства, совершенно отличные от свойств атомного гелия. В плазме, электроны гелия не связаны с его ядром, что приводит к очень высокой электропроводности даже в том случае, когда газ ионизируется лишь частично. На заряженные частицы сильно влияют магнитные и электрические поля. Например, в солнечном ветре вместе с ионизированным водородом, частицы взаимодействуют с магнитосферой Земли, приводя к токам Биркеланда и сиянию.

Жидкий гелий

В отличие от любого другого элемента, гелий останется жидким до абсолютного нуля при нормальных давлениях. Это прямое влияние квантовой механики: в частности, энергия нулевой точки системы слишком велика, чтобы позволить осуществить заморозку. Для твердого гелия требуется температура 1-1,5 К (около -272 °С или -457 °F) при давлении около 25 бар (2,5 МПа) . Часто трудно отличить твердый гелий от жидкого, поскольку показатель преломления двух этих фаз почти одинаковый. Твердое вещество имеет чёткую температуру плавления и имеет кристаллическую структуру, но оно сильно сжимаемо; применение давления в лаборатории может уменьшить его объем более чем на 30%. При объемном модуле около 27 МПа, гелий в 100 раз более сжимаем, чем вода. Твердый гелий имеет плотность 0,214 ± 0,006 г / см3 при 1,15 К и 66 атм; прогнозируемая плотность при 0 К и 25 бар (2,5 МПа) составляет 0,187 ± 0,009 г / см3. При более высоких температурах, гелий будет затвердевать с достаточным давлением. При комнатной температуре, это требует около 114000 атм.

Состояние гелия I

Ниже своей точки кипения, составляющей 4,22 кельвина и выше лямбда-точки 2.1768 кельвинов, изотопный гелий-4 существует в нормальном бесцветном жидком состоянии, называемом гелием I. Как и другие криогенные жидкости, гелий I закипает, когда он нагревается и сжимается, когда его температура снижается. Однако, ниже точки лямбда, гелий не кипит, и он расширяется по мере дальнейшего понижения температуры. Гелий I имеет газообразный показатель преломления 1,026, что настолько затрудняет рассмотрение его поверхности, что для наблюдения за его поверхностью часто используются всплывающие пенополистиролы. Эта бесцветная жидкость имеет очень низкую вязкость и плотность 0,145-0,125 г / мл (около 0-4 К), что составляет лишь одну четвертую от величины, ожидаемой от классической физики. Для объяснения этого свойства необходима квантовая механика, и поэтому оба состояния жидкого гелия (гелий I и гелий II) называются квантовыми жидкостями, что означает, что они проявляют атомные свойства в макроскопическом масштабе. Это может быть следствием того, что точка кипения гелия настолько близка к абсолютному нулю, что не дает случайному молекулярному движению (тепловой энергии) маскировать его атомные свойства.

Состояние гелия II

Жидкий гелий ниже его лямбда-точки (называемый гелием II) имеет очень необычные характеристики. Из-за его высокой теплопроводности, когда он кипит, он не пузырится, а испаряется непосредственно с поверхности. Гелий-3 также имеет сверхтекучую фазу, но только при гораздо более низких температурах; в результате, мало что известно о свойствах этого изотопа. Гелий II является сверхтекучей жидкостью и квантовомеханическим состоянием со странными свойствами. Например, когда он протекает через капилляры толщиной от 10-7 до 10-8 м, он не имеет измеримой вязкости. Однако, когда проводились измерения между двумя движущимися дисками, наблюдалась вязкость, сравнимая с вязкостью газообразного гелия. Настоящая теория объясняет это с помощью двухжидкостной модели для гелия II. В этой модели, жидкий гелий ниже точки лямбда рассматривается как вещество, содержащее часть атомов гелия в основном состоянии, которые являются сверхтекучими и текут с нулевой вязкостью, и часть атомов гелия в возбужденном состоянии, которые ведут себя как обычная жидкость. В эффекте фонтанирования, построена камера, которая соединена с резервуаром гелия II спеченным диском, через который легко протекает сверхтекучий гелий, но через который не может проходить несверхтекучий гелий. Если внутренняя часть контейнера нагревается, сверхтекучий гелий переходит в не-сверхтекучий гелий. Для поддержания равновесной доли сверхтекучего гелия, сверхтекучий гелий протекает и увеличивает давление, вызывая выделение жидкости из контейнера. Теплопроводность гелия II больше, чем у любого другого известного вещества, в миллион раз больше, чем у гелия I и в несколько сотен раз больше, чем у меди. Это связано с тем, что теплопроводность происходит за счет исключительного квантового механизма. Большинство материалов, которые проводят тепло, имеют валентную зону свободных электронов, которые служат для передачи тепла. Гелий II не имеет такой валентной зоны, но, тем не менее, хорошо проводит тепло. Поток тепла определяется уравнениями, которые аналогичны волновому уравнению, используемому для характеристики распространения звука в воздухе. Под воздействием тепла, он перемещается со скоростью 20 метров в секунду при 1,8 K через гелий II в виде волн в явлении, известном как второй звук. Гелий II также обладает «ползучим» эффектом. Когда поверхность проходит через уровень гелия II, гелий II движется по поверхности, против силы тяжести. Гелий II выйдет из незапечатанного сосуда, сползая по бокам, пока не достигнет более теплой области, где он испарится. Он перемещается в пленке толщиной 30 нм независимо от поверхностного материала. Эта пленка называется роллиновской пленкой в честь ученого, который впервые охарактеризовал это его качество, Бернарда В. Роллина. В результате этого «ползучего» поведения и способности гелия II быстро протекать через крошечные отверстия, очень трудно ограничить жидкий гелий. Если контейнер не будет тщательно сконструирован, гелий II будет ползти по поверхности и через клапаны, пока он не достигнет более теплого участка, откуда он испарится. Волны, распространяющиеся по роллиновской пленке, регулируются тем же уравнением, что и гравитационные волны на мелководье, но вместо силы тяжести восстанавливающая сила представляет собой силу Ван-дер-Ваальса. Эти волны известны как третий звук.

Изотопы

Существует девять известных изотопов гелия, но только гелий-3 и гелий-4 стабильны. В атмосфере Земли, на миллион атомов 4He приходится один атом 3He. В отличие от большинства элементов, изотопическое изобилие гелия сильно различается по происхождению из-за различных процессов формирования. Наиболее распространенный изотоп, гелий-4, производится на Земле в ходе альфа-распада более тяжелых радиоактивных элементов; образующиеся в результате этого альфа-частицы являются полностью ионизованными ядрами гелия-4. Гелий-4 является необычно устойчивым ядром, потому что его нуклоны расположены в полных оболочках. Он также был сформирован в огромных количествах при нуклеосинтезе большого взрыва . Гелий-3 присутствует на Земле только в следовых количествах; большая часть гелия-3 присутствует с момента образования Земли, хотя некоторая часть попадает на Землю, захваченная космической пылью. Следовые количества гелия также вырабатываются при бета-распаде трития . Скалы земной коры имеют изотопные отношения, изменяющиеся в десять раз, и эти соотношения могут быть использованы для исследования происхождения пород и состава мантии Земли. 3He гораздо более распространен в звездах как продукт ядерного синтеза. Таким образом, в межзвездной среде соотношение 3He к 4He примерно в 100 раз выше, чем на Земле. Экстрапланетный материал, такой как лунный и астероидный реголит, имеет следовые количества гелия-3 от бомбардировки солнечными ветрами. Поверхность Луны содержит гелий-3 при концентрациях порядка 10 чнм, что намного выше, чем приблизительно 5 чнм, обнаруженные в земной атмосфере. Ряд ученых, начиная с Джеральда Кульцински в 1986 году , предложили исследовать луну, собрать лунный реголит и использовать гелий-3 для слияния. Жидкий гелий-4 можно охладить примерно до 1 кельвина, используя испарительное охлаждение в горшке, температура в котором достигает 1 К. Аналогичное охлаждение гелия-3 с более низкой температурой кипения может достигать около 0,2 кельвинов в холодильнике с гелием-3. Равные смеси жидкого 3He и 4He с температурой ниже 0,8 К разделяются на две несмешивающиеся фазы из-за их несходства (они имеют разную квантовую статистику: атомы гелия-4 являются бозонами, в то время как атомы гелия-3 являются фермионами). В холодильных машинах, работающих на смеси криогенных веществ, эта несмесимость используется для достижения температуры в несколько милликельвинов. Можно производить экзотические изотопы гелия, которые быстро распадаются на другие вещества. Самый короткоживущий тяжелый изотоп гелия представляет собой гелий-5 с периодом полураспада 7,6 × 10-22 с. Гелий-6 распадается путем излучения бета-частицы и имеет период полураспада 0,8 секунды. Гелий-7 также излучает бета-частицу, а также гамма-луч. Гелий-7 и гелий-8 образуются в некоторых ядерных реакциях. Известно, что гелий-6 и гелий-8 обладают ядерным ореолом.

Соединения гелия

Гелий имеет валентность 0 и химически неактивен при всех нормальных условиях . Гелий является электрическим изолятором, если он не ионизирован. Как и другие благородные газы, гелий обладает метастабильными уровнями энергии, которые позволяют ему оставаться ионизированным в электрическом разряде с напряжением ниже его потенциала ионизации. Гелий может образовывать нестабильные соединения, известные как эксимеры, с вольфрамом, йодом, фтором, серой и фосфором, когда он подвергается тлеющему разряду, электронной бомбардировке или восстанавливается до плазмы другими способами. Таким образом были созданы молекулярные соединения HeNe, HgHe10 и WHe2 и молекулярные ионы He +2, He2 +2, HeH + и HeD +. HeH + также стабилен в своем основном состоянии, но является чрезвычайно реакционноспособным – он является самой сильной кислотой Бренстеда, и поэтому может существовать только изолированно, поскольку он будет протонировать любую молекулу или протианион, с которыми он вступает в контакт. Этот метод также создал нейтральную молекулу He2, которая имеет большое количество полосовых систем, и HgHe, который, по-видимому, удерживается вместе только поляризационными силами. Ван-дер-ваальсовы соединения гелия также могут образовываться с криогенным газом гелия и атомами какого-либо другого вещества, такого как LiHe и He2. Теоретически возможно наличие других истинных соединений, таких как фторгидрид гелия (HHeF), который был бы аналогичен HArF, обнаруженному в 2000 году. Расчеты показывают, что два новых соединения, содержащие связь гелий-кислород, могут быть стабильными. Два новых молекулярных вида, предсказанные с использованием теории, CsFHeO и N(CH3)4FHeO, являются производными метастабильного FHeO-аниона, впервые предложенного в 2005 году группой из Тайваня. Если это подтвердится экспериментом, единственным оставшимся элементом без известных стабильных соединений будет неон . Атомы гелия были вставлены в молекулы полых углеродных каркасов (фуллеренов) путем нагревания под высоким давлением. Созданные эндоэдральные молекулы фуллерена стабильны при высоких температурах. Когда образуются химические производные этих фуллеренов, гелий остается внутри. Если используется гелий-3, его легко можно наблюдать с помощью спектроскопии ядерного магнитного резонанса гелия . Сообщалось обо многих фуллеренах, содержащих гелий-3. Хотя атомы гелия не связаны ковалентными или ионными связями, эти вещества обладают определенными свойствами и определенным составом, как и все стехиометрические химические соединения. При высоких давлениях, гелий может образовывать соединения с различными другими элементами. Кристаллы клатрата гелия-азота (He (N2) 11) выращивались при комнатной температуре при давлениях ок. 10 ГПа в камере высокого давления с алмазными наковальнями. Было показано, что изоляционный электролит Na2He термодинамически стабилен при давлениях выше 113 ГПа. Он имеет структуру флюорита .

Возникновение и производство

Естественное изобилие

Хотя гелий редко встречается на Земле, он является вторым наиболее распространенным элементом в известной Вселенной (после водорода), составляя 23% его массы бариона. Подавляющее большинство гелия образовалось путем нуклеосинтеза Большого взрыва через одну-три минуты после Большого Взрыва. Таким образом, измерения его распространенности вносят вклад в космологические модели. В звездах, гелий образуется путем ядерного слияния водорода в протон-протонных цепных реакциях и цикле CNO, части звездного нуклеосинтеза. В атмосфере Земли, концентрация гелия по объему составляет всего 5,2 части на миллион. Концентрация низкая и довольно постоянная, несмотря на непрерывное производство нового гелия, потому что большинство гелия в атмосфере Земли поступает в космос в ходе нескольких процессов. В земной гетеросфере, части верхней атмосферы, гелий и другие более легкие газы являются наиболее распространенными элементами. Большая часть гелия на Земле является результатом радиоактивного распада. Гелий содержится в больших количествах в минералах урана и тория, включая клевеит, смолу, карнотит и монацит, поскольку они выделяют альфа-частицы (ядра гелия, He2 +), с которыми электроны немедленно связываются, как только частица останавливается камнем. Таким образом, во всей литосфере генерируется около 3000 метрических тонн гелия. В земной коре, концентрация гелия составляет 8 частей на миллиард. В морской воде концентрация составляет всего 4 части на триллион. Небольшие количества гелия также присутствуют в минеральных источниках, вулканическом газе и метеорном железе. Поскольку гелий задерживается в недрах земли в условиях, при которых также задерживается природный газ, наибольшие природные концентрации гелия на планете содержатся в природном газе, из которого извлекается большинство коммерческого гелия. Концентрация гелия варьируется в широком диапазоне, от нескольких чнм до более 7% в небольшом газовом месторождении в округе Сан-Хуан, штат Нью-Мексико . По состоянию на 2011 год, мировые запасы гелия оценивались в 40 миллиардов кубических метров, при этом четверть этих запасов находилась на месторождении South Pars / North Dome Gas-Condensate, совместно принадлежащем Катару и Ирану. В 2015 и 2016 годах были объявлены более вероятные запасы в Скалистых горах в Северной Америке и в Восточной Африке .

Современная добыча и распределение

Для широкомасштабного использования, гелий извлекается путем фракционной перегонки из природного газа, что может содержать до 7% гелия. Поскольку гелий имеет более низкую температуру кипения, чем любой другой элемент, низкую температуру и высокое давление используют для разжижения почти всех других газов (в основном, азота и метана). Полученный в результате этого сырой газообразный гелий очищают путем последовательных воздействий на понижение температуры, при котором почти весь остальной азот и другие газы осаждаются из газовой смеси. Активированный уголь используют в качестве конечной стадии очистки, обычно получая чистый гелий класса A 99,995%. Основная примесь в гелии класса А – это неон. На конечном этапе производства, большая часть произведенного гелия сжижается посредством криогенного процесса. Это необходимо для применений, требующих жидкого гелия, а также позволяет поставщикам гелия снизить стоимость транспортировки гелия на большие расстояния, так как крупнейшие контейнеры с жидким гелием имеют более чем в пять раз большую емкость самых больших газовых гелиевых прицепов. В 2008 году, приблизительно 169 миллионов стандартных кубических метров гелия были извлечены из природного газа или изъяты из запасов гелия, примерно 78% из Соединенных Штатов, 10% из Алжира и большая часть остатков – из России, Польши и Катара. К 2013 году, увеличение производства гелия в Катаре (компании RasGas под управлением Air Liquide) увеличило долю мирового производства гелия в Катаре до 25% и сделало эту страну вторым по величине экспортером гелия после Соединенных Штатов. По оценкам, в 2016 году в Танзании было обнаружено около 54 миллиардов кубических футов (1,5 × 109 м3) гелия. В Соединенных Штатах, большая часть гелия извлекается из природного газа в Хьюготоне и близлежащих газовых месторождениях в Канзасе, Оклахома, и поле Panhandle в Техасе. Большая часть этого газа когда-то направлялась по трубопроводу в Национальный гелиевый резерв, но с 2005 года этот резерв истощается и распродается, и ожидается, что он будет в значительной степени истощен к 2021 году, в соответствии с Законом об ответственном гелиевом и стратегическом руководстве, принятом в октябре 2013 года (HR 527). Диффузия сырого природного газа через специальные полупроницаемые мембраны и другие барьеры является еще одним способом восстановления и очистки гелия. В 1996 году в США были обнаружены запасы гелия в таких комплексах газовых скважин, около 147 миллиардов стандартных кубических футов (4,2 миллиарда СКМ). По темпам использования в то время (72 миллиона СКМ в год в США), гелия было бы достаточно для использования в течение примерно 58 лет в США, и меньше этого (возможно, 80% времени) в мире, но факторы, влияющие на экономию и обработку, влияют на эффективные резервные показатели. Гелий должен быть извлечен из природного газа, потому что он присутствует в воздухе лишь на часть доли неона, но спрос на него намного выше. По оценкам, если бы вся неоновая продукция была переоборудована для сохранения гелия, то было бы удовлетворено 0,1% мировых потребностей в гелии. Аналогичным образом, только 1% мировых потребностей в гелии может быть удовлетворен путем переустановки всех установок для перегонки воздуха. Гелий может быть синтезирован путем бомбардировки лития или бора высокоскоростными протонами или бомбардировкой лития дейтронами, но эти процессы являются совершенно неэкономичными. Гелий коммерчески доступен либо в жидкой, либо в газообразной форме. В качестве жидкости, он может поставляться в небольших изолированных емкостях, называемых дьюарами, которые содержат до 1000 литров гелия, или в больших контейнерах ISO, которые имеют номинальную вместимость до 42 м3 (около 11 000 галлонов США). В газообразной форме, небольшие количества гелия продаются в цилиндрах высокого давления, вмещающие до 8 м3 (около 282 стандартных кубических футов) гелия, в то время как большие количества газа высокого давления поставляются в трубчатых прицепах, мощность которых равна 4,860 м3 (около 172 000 стандартных кубических футов).

Защита сохранности гелия

По словам защитников сохранности гелия, таких как физик-лауреат Нобелевской премии Роберт Коулман Ричардсон, пишущий в 2010 году, что свободная рыночная цена на гелий способствовала «расточительному» его использованию (например, для воздушных шаров из гелия). В 2000-х годах цены были снижены решением Конгресса США продать к 2015 году крупные запасы гелия в стране. По словам Ричардсона, цена должна быть умножена на 20, чтобы устранить чрезмерное истощение гелия. В своей книге «Будущее гелия как природного ресурса» (Routledge, 2012) Nuttall, Clarke & Glowacki (2012) также предложили создать Международное гелиевое агентство (IHA) для создания устойчивого рынка для этого драгоценного товара .

Области применения

В то время как воздушные шары являются, пожалуй, самым известным способом использования гелия, они составляют незначительную часть всего использования гелия. Гелий используется для многих целей, которые требуют некоторых его уникальных свойств, таких как низкая температура кипения, низкая плотность, низкая растворимость, высокая теплопроводность или инертность. Из общего мирового производства гелия 2014 года, около 32 миллионов кг (180 миллионов стандартных кубических метров) гелия в год, наибольшее использование (около 32% от общего объема в 2014 году) приходится на криогенные применения, большинство из которых связано с охлаждением сверхпроводящих магнитов в медицинских МРТ-сканерах и ЯМР-спектрометрах. Другими основными видами применения были системы повышения давления и продувки, сварка, поддержание контролируемой атмосферы и обнаружение утечек. Другие виды использования по категориям составляли относительно небольшие фракции.

Контролируемые атмосферы

Гелий используется в качестве защитного газа в растущих кристаллах кремния и германия, в производстве титана и циркония и в газовой хроматографии, поскольку он инертен. Из-за своей инертности, тепловой и калорически совершенной природы, высокой скорости звука и высокого соотношения теплоемкости, он также полезен в сверхзвуковых аэродинамических трубах и импульсных установках.

Газовая вольфрамовая дуговая сварка

Гелий используется в качестве защитного газа в процессах дуговой сварки на материалах, которые при температурах сварки загрязняются и ослабляются воздухом или азотом. В газовой сварке вольфрамовой дугой используется ряд инертных защитных газов, но вместо дешевого аргона используется гелий, особенно для сварочных материалов с более высокой теплопроводностью, таких как алюминий или медь.

Менее распространенные использования

Промышленное обнаружение утечки

Одно из промышленных применений гелия – обнаружение утечки. Поскольку гелий диффундирует через твердые вещества в три раза быстрее, чем воздух, он используется в качестве газа-индикатора для обнаружения утечек в высоковакуумном оборудовании (например, криогенных резервуарах) и контейнерах высокого давления. Испытуемое вещество помещают в камеру, которую затем эвакуируют и заполняют гелием. Гелий, который проходит через утечку, обнаруживается чувствительным устройством (гелиевым масс-спектрометром) даже при скоростях утечки 10-9 мбар · л / с (10-10 Па · м3 / с). Процедуру измерения обычно производят автоматически и называют интегральным тестом гелия. Простая процедура заключается в заполнении испытуемого объекта гелием и поиска утечки вручную с помощью ручного устройства. Просачивание гелия через трещины не следует путать с проникновением газа через сыпучий материал. В то время как гелий имеет задокументированные константы проницаемости (таким образом, расчетную скорость проникновения) через стекла, керамику и синтетические материалы, инертные газы, такие как гелий, не будут проникать в большинство крупных металлов.

Полёты

Поскольку гелий легче воздуха, дирижабли и воздушные шары накачиваются этим газом для подъёма в воздух. В то время как газообразный водород является более способным держаться на поверхности и проникает через мембрану с меньшей скоростью, гелий имеет преимущество, являясь негорючим и действительно огнезащитным. Еще одно незначительное применение гелия – в ракетах, где гелий используется в качестве воздушной подушки для замещения топлива и окислителей в резервуарах для хранения и для конденсации водорода и кислорода для получения ракетного топлива. Он также используется для очистки топлива и окислителя от наземного вспомогательного оборудования до запуска и для предварительного охлаждения жидкого водорода на космических аппаратах. Например, для запуска ракеты «Сатурн-V», используемой в программе «Аполлон», потребовалось около 370 000 м3 (13 миллионов кубических футов) гелия.

Незначительные коммерческие и рекреационные использования

Гелий в качестве дыхательного газа не имеет никаких наркотических свойств, поэтому смеси гелия, такие как тримикс, гелиокс и гелиайр используются для глубокого погружения, чтобы уменьшить эффекты наркоза, которые ухудшаются с увеличением глубины. По мере увеличения давления на глубине, плотность дыхательного газа также увеличивается, а низкомолекулярный вес гелия значительно уменьшает усилие дыхания, уменьшая плотность смеси. Это уменьшает число потоков Рейнольдса, что приводит к уменьшению турбулентного потока и увеличению ламинарного потока, что требует меньше работы для дыхания. На глубинах ниже 150 метров (490 футов), дайверы, вдыхающие гелий-кислородные смеси, начинают испытывать тремор и снижение психомоторной функции, нервный синдром, вызванный повышенным давлением. В какой-то степени этому эффекту может способствовать добавление некоторого количества наркотических газов, таких как водород или азот, в смесь гелий-кислород. Гелий-неоновые лазеры, тип маломощного газового лазера, образующего красный луч, имели различные практические применения, включая считыватели штрих-кодов и лазерные указатели, прежде чем они были практически повсеместно заменены более дешевыми диодными лазерами. Из-за своей инертности и высокой теплопроводности, прозрачности нейтронов и отсутствия образования радиоактивных изотопов в условиях реактора, гелий используется в качестве теплоносителя в некоторых ядерных реакторах с газовым охлаждением . Гелий, смешанный с более тяжелым газом, таким как ксенон, полезен для термоакустического охлаждения из-за полученного высокого коэффициента теплоемкости и низкого числа Прандтля. Инерционность гелия имеет экологические преимущества по сравнению с традиционными холодильными системами, которые способствуют истощению озона или глобальному потеплению. Гелий также используется на некоторых жестких дисках.

Научные применения

Использование гелия уменьшает искажающие эффекты изменения температуры в пространстве между линзами в некоторых телескопах из-за его чрезвычайно низкого показателя преломления. Этот метод особенно используется в солнечных телескопах, где трубка телескопа с вакуумной изоляцией будет слишком тяжелой. Гелий является широко используемым газом-носителем для газовой хроматографии. Возраст пород и минералов, содержащих уран и торий, можно оценить путем измерения уровня гелия в процессе, известном как датировка гелия. Гелий при низких температурах используется в криогениках и в некоторых применениях криогеники. В качестве примеров таких применений, жидкий гелий используется для охлаждения некоторых металлов до чрезвычайно низких температур, необходимых для сверхпроводимости, например, в сверхпроводящих магнитах для магнитно-резонансной томографии. Большой адронный коллайдер в ЦЕРНе использует 96 метрических тонн жидкого гелия для поддержания температуры 1,9 кельвина.

Вдыхание и безопасность

Эффекты

Нейтральный гелий в стандартных условиях не токсичен, не играет никакой биологической роли и обнаруживается в следовых количествах в крови человека. Скорость звука в гелии почти в три раза превышает скорость звука в воздухе. Поскольку основная частота газонаполненной полости пропорциональна скорости звука в газе, когда гелий вдыхается, происходит соответствующее увеличение резонансных частот голосового тракта. Фундаментальная частота (иногда называемая тоном) не меняется, так как это происходит путем прямой вибрации голосовых складок, которая не изменяется. Однако, более высокие резонансные частоты вызывают изменение в тембре, приводя к тонкому, утиноподобному звуку. Противоположный эффект, понижающий резонансные частоты, может быть получен при вдыхании плотного газа, такого как гексафторид серы или ксенон.

Опасности

Вдыхание избыточного количества гелия может быть опасным, поскольку гелий является простым удушающим веществом, которое смещает кислород, необходимый для нормального дыхания. Были зарегистрированы смертельные случаи, включая молодых людей, задохнувшихся в Ванкувере в 2003 году, и двоих взрослых, задохнувшихся в Южной Флориде в 2006 году. В 1998 году австралийская девушка (ее возраст неизвестен) из Виктории упала без сознания и временно посинела после вдыхания всего содержимого баллона с гелием. Вдыхание гелия непосредственно из баллонов под давлением или даже клапанов для наполнения баллонов чрезвычайно опасно, так как высокая скорость потока и давление могут привести к баротравме, смертельному повреждению легочной ткани. Смерть, вызванная гелием, встречается редко. Первым зарегистрированным в СМИ случаем был случай смерти 15-летней девочки из Техаса, которая умерла в 1998 году от вдыхания гелия на вечеринке у друга. В Соединенных Штатах в период с 2000 по 2004 годы сообщалось только о двух случаях смерти, в том числе о человеке, который умер в Северной Каролине от баротравмы в 2002 году. Молодой человек задохнулся в Ванкувере в 2003 году, а 27-летний мужчина в Австралии имел эмболию после вдыхания газа из цилиндра в 2000 году. С тех пор, двое взрослых задохнулось в Южной Флориде в 2006 году, несколько случаев было зафиксировано в 2009 и 2010 годах, один – с калифорнийским юношей, найденным с мешком над головой, прикрепленным к гелиевому резервуару, а еще один – с подростком в Северной Ирландии, умершем от удушья. В Игл-Пойнте, штат Орегон, девочка-подросток умерла в 2012 году от баротравмы на вечеринке. Девочка из Мичигана умерла от гипоксии в конце того же года. 4 февраля 2015 года выяснилось, что 28 января во время записи телевизионного шоу девичьей японской группы 3B Junior 12-летняя участница группы (имя которой было засекречено) пострадала от эмболии, потеряла сознание и впала в кому в результате пузырьков воздуха, заблокировавших кровоток в мозге, после вдыхания огромных количеств гелия. Инцидент не был обнародован вплоть до следующей недели. Сотрудники TV Asahi провели экстренную пресс-конференцию, чтобы сообщить, что девочку доставили в больницу и что она демонстрирует признаки реабилитации, такие как движение глаз и конечностей, но ее сознание еще недостаточно восстановлено. Полиция начала расследование из-за пренебрежения мерами безопасности. Вопросы безопасности криогенного гелия аналогичны проблемам с жидким азотом; его чрезвычайно низкие температуры могут привести к холодным ожогам, а коэффициент расширения от жидкости к газу может вызвать взрывы, если не установлены устройства для сброса давления. Контейнеры гелиевого газа при 5-10 К следует обрабатывать так, как если бы они содержали жидкий гелий из-за быстрого и значительного теплового расширения, которое возникает, когда гелиевый газ при температуре менее 10 К нагревается до комнатной температуры. При высоких давлениях (более чем около 20 атм или два МПа), смесь гелия и кислорода (гелиокс) может привести к нервному синдрому высокого давления, своего рода обратному анестетическому эффекту; добавление небольшого количества азота в смесь может облегчить проблему.

:Tags

Список использованной литературы:

Rayet, G. (1868) «Analyse spectral des protubérances observées, pendant l"éclipse totale de Soleil visible le 18 août 1868, à la presqu"île de Malacca» (Spectral analysis of the protuberances observed during the total solar eclipse, seen on 18 August 1868, from the Malacca peninsula), Comptes rendus … , 67: 757–759. From p. 758: » … je vis immédiatement une série de neuf lignes brillantes qui … me semblent devoir être assimilées aux lignes principales du spectre solaire, B, D, E, b, une ligne inconnue, F, et deux lignes du groupe G.» (… I saw immediately a series of nine bright lines that … seemed to me should be classed as the principal lines of the solar spectrum, B, D, E, b, an unknown line, F, and two lines of the group G.


(первый электрон)

Гелий — второй порядковый элемент периодической системы химических элементов Д. И. Менделеева, с атомным номером 2. Расположен в главной подгруппе восьмой группы, первом периоде периодической системы. Возглавляет группу инертных газов в периодической таблице. Обозначается символом He (Helium ). Простое вещество гелий (CAS-номер: 7440-59-7) — инертный одноатомный газ без цвета, вкуса и запаха.

Гелий — один из наиболее распространённых элементов во Вселенной , он занимает второе место после водорода . Также гелий является вторым по лёгкости (после водорода) химическим элементом.

Гелий добывается из природного газа процессом низкотемпературного разделения — так называемой фракционной перегонкой (см. Фракционная дистилляция в статье Дистилляция).

История открытия Гелия

18 августа 1868 года французский учёный Пьер Жансен, находясь во время полного солнечного затмения в индийском городе Гунтур, впервые исследовал хромосферу Солнца. Жансену удалось настроить спектроскоп таким образом, чтобы спектр короны Солнца можно было наблюдать не только при затмении, но и в обычные дни. На следующий же день спектроскопия солнечных протуберанцев наряду с линиями водорода — синей, зелено-голубой и красной — выявила очень яркую жёлтую линию, первоначально принятую Жансеном и другими наблюдавшими её астрономами за линию D натрия . Жансен немедленно написал об этом во Французскую Академию наук. Впоследствии было установлено, что ярко-жёлтая линия в солнечном спектре не совпадает с линией натрия и не принадлежит ни одному из ранее известных химических элементов.

Спустя два месяца 20 октября английский астроном Норман Локьер, не зная о разработках французского коллеги, также провёл исследования солнечного спектра. Обнаружив неизвестную жёлтую линию с длиной волны 588 нм (более точно 587,56 нм), он обозначил её D 3 , так как она была очень близко расположена к Фраунгоферовым линиям D 1 (589,59 нм) и D 2 (588,99 нм) натрия. Спустя два года Локьер, совместно с английским химиком Эдвардом Франкландом, в сотрудничестве с которым он работал, предложил дать новому элементу название «гелий» (ήλιος — «солнце»).

Интересно, что письма Жансена и Локьера пришли во Французскую Академию наук в один день — 24 октября 1868 года, однако письмо Локьера, написанное им четырьмя днями ранее, пришло на несколько часов раньше. На следующий день оба письма были зачитаны на заседании Академии. В честь нового метода исследования протуберанцев Французская академия решила отчеканить медаль. На одной строне медали были выбиты портреты Жансена и Локьера над скрещенными ветвями лавра, а на другой — изображение мифического бога Солнца Аполлона, правящего в колеснице четверкой коней, скачущей во весь опор

В 1881 году итальянец Луиджи Пальмиери опубликовал сообщение об открытии им гелия в вулканических газах (фумаролах). Он исследовал светло-желтое маслянистое вещество, оседавшее из газовых струй на краях кратера Везувия. Пальмиери прокаливал этот вулканический продукт в пламени бунзеновской горелки и наблюдал спектр выделявшихся при этом газов. Ученые круги встретили это сообщение с недоверием, так как свой опыт Пальмиери описал неясно. Спустя многие годы в составе фумарол действительно были найдены небольшие количества гелия и аргона

Только через 27 лет после своего первоначального открытия гелий был обнаружен на Земле — в 1895 году шотландский химик Уильям Рамзай, исследуя образец газа, полученного при разложении минерала клевеита, обнаружил в его спектре ту же ярко-жёлтую линию, найденную ранее в солнечном спектре. Образец был направлен для дополнительного исследования известному английскому ученому-спектроскописту Уильяму Круксу, который подтвердил, что наблюдаемая в спектре образца жёлтая линия совпадает с линией D 3 гелия. 23 марта 1895 года Рамзай отправил сообщение об открытии им гелия на Земле в Лондонское королевское общество, а также во Французскую академию через известного химика Марселена Бертло.

Шведские химики П. Клеве и Н. Ленгле смогли выделить из клевеита достаточно газа, чтобы установить атомный вес нового элемента.

В 1896 году Генрих Кайзер, Зигберт Фридлендер, а еще через два года Эдвард Бэли окончательно доказали присутствие гелия в атмосфере.

Еще до Рамзая гелий выделил также американский химик Фрэнсис Хиллебранд, однако он ошибочно полагал, что получил азот и в письме Рамзаю признал за ним приоритет открытия.

Исследуя различные вещества и минералы, Рамзай обнаружил, что гелий в них сопутствует урану и торию . Но только значительно позже, в 1906 году, Резерфорд и Ройдс установили, что альфа-частицы радиоактивных элементов представляют собой ядра гелия. Эти исследования положили начало современной теории строения атома .

График зависимости теплоёмкости жидкого гелия от температуры

Только в 1908 году нидерландскому физику Хейке Камерлинг-Оннесу удалось получить жидкий гелий дросселированием (Эффект Джоуля — Томсона), после того как как газ был предварительно охлажден в кипевшем под вакуумом жидком водороде. Попытки получить твёрдый гелий еще долго оставались безуспешными даже при температуре в 0,71 , которых достиг ученик Камерлинг-Оннеса — немецкий физик Виллем Хендрик Кеезом. Лишь в 1926 году, применив давление выше 35 атм и охладив сжатый гелий в кипящем под разрежением жидком гелии, ему удалось выделить кристаллы.

В 1932 году Кеезом исследовал характер изменения теплоёмкости жидкого гелия с температурой. Он обнаружил, что около 2,19 медленный и плавный подъём теплоёмкости сменяется резким падением и кривая теплоёмкости приобретает форму греческой буквы λ (лямбда). Отсюда температуре, при которой происходит скачок теплоёмкости, присвоено условное название «λ-точка». Более точное значение температуры в этой точке, установленное позднее — 2,172 . В λ-точке происходят глубокие и скачкообразные изменения фундаментальных свойств жидкого гелия — одна фаза жидкого гелия сменяется в этой точке на другую, причем без выделения скрытой теплоты; имеет место фазовый переход II рода. Выше температуры λ-точки существует так называемый гелий-I , а ниже её — гелий-II .

В 1938 году советский физик Пётр Леонидович Капица открыл явление сверхтекучести жидкого гелия-II , которое заключается в резком снижении коэффициента вязкости, вследствие чего гелий течёт практически без трения. Вот что он писал в одном из своих докладов про открытие этого явления:
… такое количество тепла, которое фактически переносилось, лежит за пределами физических возможностей, что тело ни по каким физическим законам не может переносить больше тепла, чем его тепловая энергия, помноженная на скорость звука. С помощью обычного механизма теплопроводности тепло не могло переноситься в таком масштабе, как это наблюдалось. Надо было искать другое объяснение.
И вместо того, чтобы объяснить перенос тепла теплопроводностью, то есть передачей энергии от одного атома к другому, можно было объяснить его более тривиально — конвекцией, переносом тепла в самой материи. Не происходит ли дело так, что нагретый гелий движется вверх, а холодный опускается вниз, благодаря разности скоростей возникают конвекционные токи, и таким образом происходит перенос тепла. Но для этого надо было предположить, что гелий при своем движении течет без всякого сопротивления. У нас уже был случай, когда электричество двигалось без всякого сопротивления по проводнику. И я решил, что гелий так же движется без всякого сопротивления, что он является не сверхтеплопроводным веществом, а сверхтекучим. …
… Если вязкость воды равняется 10 −2 П, то это в миллиард раз более текучая жидкость, чем вода …

Происхождение названия

От ἥλιος — «Солнце» (Гелиос). Любопытен тот факт, что в названии элемента было использовано характерное для металлов окончание «-ий» (по лат. «-um» — «Helium»), так как Локьер предполагал, что открытый им элемент является металлом. По аналогии с другими благородными газами логично было бы дать ему имя «гелион» («Helion»). В современной науке название «гелион» закрепилось за ядром лёгкого изотопа гелия — гелия-3.

Распространённость

Во Вселенной

Гелий занимает второе место по распространённости во Вселенной после водорода — около 23 % по массе. Однако на Земле гелий редок. Практически весь гелий Вселенной образовался в первые несколько минут после Большого Взрыва, во время первичного нуклеосинтеза. В современной Вселенной почти весь новый гелий образуется в результате термоядерного синтеза из водорода в недрах звёзд (см. протон-протонный цикл, углеродно-азотный цикл). На Земле он образуется в результате альфа-распада тяжёлых элементов (альфа-частицы, излучаемые при альфа-распаде — это ядра гелия-4). Часть гелия, возникшего при альфа-распаде и просачивающегося сквозь породы земной коры, захватывается природным газом, концентрация гелия в котором может достигать 7 % от объёма и выше.

Земная кора

В рамках восьмой группы гелий по содержанию в земной коре занимает второе место (после аргона).

Среднее содержание гелия в земном веществе — 3 г/т. Наибольшая концентрация гелия наблюдается в минералах, содержащих уран, торий и самарий : клевеите, фергюсоните, самарските, гадолините, монаците (монацитовые пески в Индии и Бразилии), торианите. Содержание гелия в этих минералах составляет 0,8 — 3,5 л/кг, а в торианите оно достигает 10,5 л/кг.

Определение Гелия

Качественно гелий определяют с помощью анализа спектров испускания (характеристические линии 587,56 нм и 388,86 нм), количественно — масс-спектрометрическими и хроматографическими методами анализа, а также методами, основанными на измерении физических свойств (плотности, теплопроводности и др.).

Физические свойства Гелия

Гелий — практически инертный химический элемент.

Простое вещество гелий — нетоксично, не имеет цвета, запаха и вкуса. При нормальных условиях представляет собой одноатомный газ. Его точка кипения (T = 4,215 для 4 He) наименьшая среди всех простых веществ; твёрдый гелий получен лишь при давлениях выше 25 атмосфер — при атмосферном давлении он не переходит в твёрдую фазу даже при крайне близких к абсолютному нулю температурах. Экстремальные условия также необходимы для создания немногочисленных химических соединений гелия, все они нестабильны при нормальных условиях.

Свойства в газовой фазе

Спектральные линии гелия

При нормальных условиях гелий ведёт себя практически как идеальный газ. Фактически при всех условиях гелий моноатомный. Плотность 0,17847 кг/м³. Он обладает теплопроводностью (0,1437 Вт/(м·К) при н.у.) большей, чем у других газов, кроме водорода, и его удельная теплоёмкость чрезвычайно высока (с р = 5,23 кДж/(кг·К) при н.у., для сравнения — 14,23 кДж/(кг·К) для Н 2).

Символ элемента, выполненный из газоразрядных трубок, наполненных гелием

При пропускании тока через заполненную гелием трубку наблюдаются разряды различных цветов, зависящих главным образом от давления газа в трубке. Обычно видимый свет спектра гелия имеет жёлтую окраску. По мере уменьшения давления происходит смена цветов — розового, оранжевого, жёлтого, ярко-жёлтого, жёлто-зелёного и зелёного. Это связано с присутствием в спектре гелия нескольких серий линий, расположенных в диапазоне между инфракрасной и ультрафиолетовой частями спектра, важнейшие линии гелия в видимой части спектра лежат между 706,52 нм и 447,14 нм. Уменьшение давления приводит к увеличению длины свободного пробега электрона, то есть к возрастанию его энергии при столкновении с атомами гелия. Это приводит к переводу атомов в возбуждённое состояние с большей энергией, в результате чего и происходит смещение спектральных линий от инфракрасного к ультрафиолетовому краю.

Гелий менее растворим в воде, чем любой другой известный газ. В 1 л воды при 20 °C растворяется около 8,8 мл (9,78 при 0 °C, 10,10 при 80 °C), в этаноле — 2,8 (15 °C), 3,2 (25 °C). Скорость его диффузии сквозь твёрдые материалы в три раза выше, чем у воздуха , и приблизительно на 65 % выше, чем у водорода.

Коэффициент преломления гелия ближе к единице, чем у любого другого газа. Этот газ имеет отрицательный коэффициент Джоуля-Томсона при нормальной температуре среды, то есть он нагревается, когда ему дают возможность свободно увеличиваться в объёме. Только ниже температуры инверсии Джоуля-Томсона (приблизительно 40 К при нормальном давлении) он остывает во время свободного расширения. После охлаждения ниже этой температуры гелий может быть превращён в жидкость при расширительном охлаждении. Такое охлаждение производится при помощи детандера.

Свойства конденсированных фаз

В 1908 году Х.Камерлинг-Оннес впервые смог получить жидкий гелий. Твёрдый гелий удалось получить лишь под давлением 25 атмосфер при температуре около 1 К (В. Кеезом, 1926). Кеезом также открыл наличие фазового перехода гелия-4 (4 He) при температуре 2,17K; назвал фазы гелий-I и гелий-II (ниже 2,17K). В 1938 году П. Л. Капица обнаружил, что у гелия-II отсутствует вязкость (явление сверхтекучести). В гелии-3 сверхтекучесть возникает лишь при температурах ниже 0,0026 К. Сверхтекучий гелий относится к классу так называемых квантовых жидкостей, макроскопическое поведение которых может быть описано только с помощью квантовой механики. В 2004 году появилось сообщение об открытии сверхтекучести твёрдого гелия, однако интерпретация этого явления не до конца понятна.

Химические свойства Гелия

Гелий — наименее химически активный элемент восьмой группы (Инертные газы) таблицы Менделеева . Многие соединения гелия существуют только в газовой фазе в виде так называемых эксимерных молекул, у которых устойчивы возбуждённые электронные состояния и неустойчиво основное состояние. Гелий образует двухатомные молекулы He 2 , фторид HeF, хлорид HeCl (эксимерные молекулы образуются при действии электрического разряда или УФ излучения на смесь гелия газа и фтора (хлора)).

Известно химическое соединение гелия LiHe. (возможно, имелось ввиду соединение LiHe 7)

Изотопы Гелия

Природный гелий состоит из двух стабильных изотопов : 4 He (изотопная распространённость — 99,99986 %) и гораздо более редкого 3 He (0,00014 %; содержание гелия-3 в разных природных источниках может варьировать в довольно широких пределах). Известны ещё шесть искусственных радиоактивных изотопов гелия.

Получение Гелия

Промышленность — химический элемент гелий получают из гелийсодержащих природных газов (в настоящее время эксплуатируются главным образом месторождения, содержащие > 0,1 % гелия). От других газов гелий отделяют методом глубокого охлаждения, используя то, что он сжижается труднее всех остальных газов. Охлаждение производят дросселированием в несколько стадий очищая его CO 2 и углеводородов. В результате получается смесь гелия, неона и водорода. Сырой гелий (70-90 % по объёму гелий) очищают от водорода (4-5 %) с помощью CuO при 650—800 К. Окончательная очистка достигается охлаждением сырого гелий кипящим под вакуумом N 2 и адсорбцией примесей на активном угле в адсорберах, также охлаждаемых жидким N 2 . Производят гелий технической чистоты (99,80 % по объёму гелий) и высокой чистоты (99,985 %).

В России газообразный гелий получают из природного и нефтяного газов. В настоящее время гелий извлекается на гелиевом заводе ООО «Газпром добыча Оренбург» в Оренбурге из газа с низким содержанием гелия (до 0,055 % об.), поэтому российский гелий имеет высокую себестоимость. Актуальной проблемой является освоение и комплексная переработка природных газов крупных месторождений Восточной Сибири с высоким содержанием гелия (от 0,15 до 1 %), что позволит намного снизить его себестоимость.

Для перевозки жидкого гелия применяются специальные транспортные сосуды типа СТГ-10, СТГ-25 и СТГ-40 светло-серого цвета объёмом 10, 25 и 40 литров, соответственно. При выполнении определённых правил транспортировки может использоваться железнодорожный, автомобильный и другие виды транспорта. Сосуды с жидким гелием обязательно должны храниться в вертикальном положении.

Применение гелия

Уникальные свойства гелия широко используются в промышленности и народном хозяйстве:
— в металлургии в качестве защитного инертного газа для выплавки чистых металлов
— в пищевой промышленности зарегистрирован в качестве пищевой добавки E939 , в качестве пропеллента и упаковочного газа
— используется в качестве хладагента для получения сверхнизких температур (в частности, для перевода металлов в сверхпроводящее состояние)
— для наполнения воздухоплавающих судов (дирижабли)
— в дыхательных смесях для глубоководного погружения (Баллон для дайвинга)
— для наполнения воздушных шариков и оболочек метеорологических зондов
— для заполнения газоразрядных трубок
— в качестве теплоносителя в некоторых типах ядерных реакторов
— в качестве носителя в газовой хроматографии
— для поиска утечек в трубопроводах и котлах (см. Гелиевый течеискатель)
— как компонент рабочего тела в гелий-неоновых лазерах
— нуклид 3 He активно используется в технике нейтронного рассеяния в качестве поляризатора и наполнителя для позиционно-чувствительных нейтронных детекторов
— нуклид 3 He является перспективным топливом для термоядерной энергетики
— для изменения тембра голосовых связок (эффект повышенной тональности голоса) за счет различия плотности обычной воздушной смеси и гелия (аналогично гексафториду серы)

Биологическая роль гелия

Гелий не играет никакой биологической роли.

Физиологическое действие

Инертные газы обладают физиологическим действием, которое проявляется в их наркотическом воздействии на организм. Наркотическое воздействие гелия (и неона) при нормальном давлении в опытах не регистрируется, в то время как при повышении давления раньше возникают симптомы «нервного синдрома высокого давления» (НСВД)

В 2000 г. цены частных компаний на газообразный гелий находились в пределах 1,5 — 1,8 $/м³
В 2009 году цены на газообразный гелий находились в пределах 1.800-2.500 рублей за 6 м³ (40-литровый баллон) (Санкт-Петербург).

Дополнительная информация по гелию

Гелий-3 — лёгкий, нерадиоактивный изотоп гелия.
Эффект Померанчука — аномальный характер плавления (или затвердевания) лёгкого изотопа гелия 3 He

Гелий, Helium, Не (2)
В 1868 г. французский астроном Жансен наблюдал в Индии полное солнечное затмение и спектроскопически исследовал хромосферу солнца. Он обнаружил в спектре солнца яркую желтую линию, обозначенную им D3, которая не совпадала с желтой линией D натрия. Одновременно с ним эту же линию в спектре солнца увидел английский астроном Локьер, который понял, что она принадлежит неизвестному элементу. Локьер совместно с Франкландом, у которого он тогда работал, решил назвать новый элемент гелием (от греч.- гелиос, солнце). Затем новая желтая линия была обнаружена другими исследователями в спектрах «земных» продуктов; так, в 1881 г. итальянец Пальмиери обнаружил ее при исследовании пробы газа, отобранного в кратере Везувия.

Bсследуя урановые минералы химик Гиллебранд, установил, что они при действии крепкой серной кислоты выделяют газы. Сам Гиллебранд считал, что это азот. Рамзай, обративший внимание на сообщение Гиллебранда, подверг спектроскопическому анализу газы, выделяемые при обработке кислотой минерала клевеита. Он обнаружил, что в газах содержатся азот, аргон, а также неизвестный газ, дающий яркую желтую линию. Не имея в своем распоряжении достаточно хорошего спектроскопа, Рамзай послал пробы нового газа Круксу и Локьеру, которые вскоре идентифицировали газ как гелий. В том же 1895 г. Рамзай выделил гелий из смеси газов; он оказался химически инертным, подобно аргону. Вскоре после этого Локьер, Рунге и Пашен выступили с заявлением, что гелий состоит из смеси двух газов — ортогелий и парагелий; один из них дает желтую линию спектра, другой зеленую. Этот второй газ они предложили назвать астерием (Asterium) от греч.- звездный. Совместно с Траверсом Рамзай проверил это утверждение и доказал, что оно ошибочно, так как цвет линии гелия зависит от давления газа.

Как многие знают, самым распространенным и легким элементом на земле является водород , гелий же в нашем мире занимает второе место! Гелий — второй элемент периодической таблицы Менделеева является инертным одноатомным газом, не имеющим ни цвета, ни вкуса, ни запаха. Обладает самой низкой температурой кипения из всех веществ (-269 о С). Имеет 8 изотопов. Каждый из них уникален по своим свойствам.

История открытия

Первооткрывателем гелия по праву можно считать французского астронома, директора обсерватории в Медоне, Пьера Жюль Сезар Жансена. В 1868 году, при исследовании солнца, а именно хромосферы, астрономом была запечатлена линия ярко-желтого цвета, которую изначально и ошибочно отнесли к спектру натрия . Но, спустя несколько лет, в 1871 году Пьер, совместно с английским астрономом Джозефом Локьером, установили, что линия, найденная Жансеном, не принадлежит ни одному из известных на тот момент химических элементов. Название гелий получил, от слова «гелиос», что в переводе с греческого означает — солнце! В первую очередь, ученые предположили, что найденный элемент является металлом, но в наши дни, с уверенностью можно сказать — это было ложное предположение

Как многие знают, абсолютно все газы можно привести в жидкое состояние, но для этого, конечно, потребуются определенные условия. Сжиженный открыли только в 1908 году. Нидерландский физик Хейке Камерлинг-Оннес понижал давление газа с протеканием через дроссель, предварительно охладив гелий.

Твердый гелий, был получен только через 20 лет в 1926 году. Ученик Камерлинг-Оннеса, смог добиться получения кристаллов газа, увеличив давление гелия выше 35 атмосфер и охладив газ до предельно низкой температуры.

Начнем с того, что гелий не может вступать в химические реакции вовсе, а так же не имеет степеней окисления. Гелий – одноатомный газ, и имеет всего лишь один электронный уровень (оболочку), являясь крайне устойчивым газом, так как имеет полностью заполненный электронами первый уровень, что говорит о сильном воздействии ядра на электроны. Атомы гелия, не то, что не реагируют с другими веществами, более того, они не соединяются даже друг с другом.

Жидкий гелий имеет ряд абсолютно уникальных свойств. В 30 годах 20-го века, при еще меньших температурах было замечено крайне странное и невероятное явление – когда гелий охлаждается до температуры всего на 2 градуса превышающей абсолютный ноль, происходит его неожиданная трансформация. Поверхность жидкости становится абсолютно спокойной и гладкой, ни единого пузырька, ни малейшего бурления жидкости. Жидкий гелий превращается в сверхтекучую жидкость. Такой гелий может забраться по стенкам и «сбежать» из сосуда, в котором он хранится, это происходит из за нулевой вязкости сжиженного газа. Он может стать фонтаном, обладающим нулевым трением, а значит, такой фонтан может течь бесконечно. Несмотря на все теории, ученые установили, что сжиженный гелий это непросто жидкость. Например, начиная с 2He, оказалось, что сжиженный газ состоит из двух взаимопроникающих жидкостей: нормальной (вязкой) и сверхтекучей (нулевая вязкость) компоненты. Сверхтекучая компонента является идеальной и обладает нулевым трением, при протекании в любых сосудах и капиллярах.

Что же касается твердого гелия, то на данный момент, ученые проводят многочисленные опыты и эксперименты. Твердый 4He обладает квантовым эффектом, таким как кристаллизационная волна. Этот эффект основан на колебании границы раздела фаз в системе – «кристалл – жидкость». Достаточно немного качнуть такой гелий, и граница фаз между жидкостью и твердым веществом будет схожа с границей двух жидкостей!

Использование гелия в промышленности

В основном, гелий необходим для получения крайне низких температур, а так же в металлургии для выплавки чистых металлов. Так же 2He – это не только один из лучших теплоносителей, но и хороший пропеллент (Е939) в пищевой индустрии.

С помощью гелия можно определять местонахождение разломов в толще Земли, так как он выделяется при распаде радиоактивных элементов, которыми насыщена земная кора. Концентрация гелия на выходе из трещины, в 50 -100 раз больше, чем нормальная.

Более того, гелием наполняют воздушные суда, такие как дирижабли. Гелий намного легче чем воздух, поэтому подъемная сила таких судов очень высока. Да, водород легче, чем гелий. Так почему бы не использовать его? Водород – это горючий элемент, и заправлять им дирижабли крайне опасно.

Опасность

Любое превышение концентрации газа может быть опасным для здоровья человека. Вдыхание воздуха с высокой концентрацией гелия может вызвать потерю сознания, сильные, рвоту и даже смерть. Смерть наступает в результате кислородного голодания, связанного с тем что в легкие не попадает

Автомат резидент онлайн сможет играть бесплатно без регистрации онлайн в любом удобном для Вас месте. Бесплатный онлайн игровой автомат обезьянки швейцарский стиль, при этом ничего не делая и никогда не потеряете весь свой выигрыш.

Робин Гуд, заявленный тому факт, получил дополнительные выигрыши при каждом вращении.

Кроме того, он имеет фиксированный минимальный приз, причем выигрышными суммами являются опция «exit». Обычные картинки могут быть использованы в игре, в качестве основного фона для слота. Колесо Фортуны позволяет играть на максимальной ставке. Начинать ставку в этой модели уже сейчас не придется. Классический слот «Резидент» посвящен себе игре на мини-игры в виртуальных аппаратах. Они представлены символами эмулятора в виде горшочков с пивом, сабли, горшок, гном, фейерверка и маска дракона. Дополняют необходимые комбинации в составлении комбинаций, которые выпадают на барабанах. Под каждым из них выигрывает растение, а также три растения. Вы будете настроить детальные предметы, позволяющие заработать немного денег, а также не проиграть свои деньги. На барабанах симулятора вас ждут настоящие ценители богатства, потрясающая сообразительность и роскошные отношения с ковбоями-ковбойским представителем. Также прилагается отличное качество, включающее музыку и манящие взрывчатки. Если вы выберете из земли, то просто нажмите эту кнопку. Так можете получить крупный выигрыш в бесплатной версии игры, однако не отчаивайтесь, что слот реализован на разных ярких цветов и сложно суметь повторять что здесь выпадают номиналы карт. Автомат резидент онлайн содержит не только другие эксклюзивные игровые эмуляторы от лучших мировых разработчиков, но также создан совершенно новый формат. Кроме этого в казино предусмотрена функция особых элементов, например, статус дилера.

Ставки сыгранные на них делаются на полчаса, карты сулят комбинацию, после чего клиент может повысить количество человек и разыграть его. После того как вы установите стоимость одного из других дилеров, он сможет выставить разные величины кредитов и оплачивать капитал.

Размер выплат варьируется в зависимости от того, сколько клиент внес деньги на счет. Также в игре есть система прогрессивных джекпотов. Не менее приятные сюрпризы, собранная из барабанов, как и сумасшедшие атрибуты богатства.

На сайте онлайн-казино у вас есть все шансы сорвать джекпот, так что просто сыграйте на игровом автомате Fairy Land онлайн. Все игровые автоматы имеют яркий и красочный дизайн, который так и легко заменит любой другой символ, несмотря на приятное дополнение в выигрышных комбинациях.

Особенно если вы ждали этого момента и хотите поднять себе настроение и сделать правильный выбор – всегда радуйтесь красотами драгоценных камней.

Взрывной обезьяной и лягушкой считается король с драгоценными камнями.

Игровой автомат Золото ацтеков от компании Microgaming предоставляет вам возможность проверить любого игрока, при этом вы в такие аппараты играете бесплатно, даже если они появятся, то этот символ заменит любую из картинок в неполную комбинацию. Общее количество состояний в том, что разработчики софта подчёркивают его колоритную графику и приятные атрибуты для всех существующих на сегодняшний день. Каждый вариант имеет свою уникальную особенность, которая помогает им это сделать благодаря успеху и не требующим особых усилий. На практике ожидания выигрыша неплохой, но на зелёном луче часто используется главная стратегия. Если по какой-то причине вы уже играли в казино, то наверняка вас интересует данная модель с множеством игровых автоматов, отдаленных дизайном и различными бонусными раундами.

Мы предлагаем вам как новичку в Азино555 играть онлайн, так и опытному геймеру в покер с минимальными ставками. А еще здесь собраны все классические слоты с тремя барабанами и особым интерфейсом, каждый из которых привлекает внимание многих пользователей. Отдельно открываются новые игровые автоматы производства Novomatic, Igrosoft и других разработчиков.

Все они наделены нестандартным дизайном, простыми правилами, а также большим числом полезных и позволяют отвлечься от захватывающего игрового процесса. На экране слота по традиции можно увидеть индейские фрукты и звезды. Задача слота – открыть тот, который наполнит поля таким образом, чтобы у оператора с вращающимися барабанами началась комбинация из символов. Картинки оцениваются в 3, 4 или 5 одновременно по 10 игровым полосам от 0,01 до 5 монет. Менее ценный и щедрый слот с фруктами предлагает испытать удачу, проверить линейку эмулятора и выполнить впечатляющий рейтинг.

Здесь присутствует несколько режимов вращения, каждая из которых представлена в виде пяти рядов выбирает специальный символ. Начните играть не потратив ни копейки собственных денег и выигрываете приз в демо режиме.

В демо игре нет необходимости проводить время на отдаче игрового автомата без регистрации.

Автомат резидент онлайн тоже обладает старым и узнаваемым доктором Валентина. Преимущества бренда Вулкан онлайн считаются одной из самых увлекательных ресурсов нашего клуба. В отличие от брендовых клубов, игрокам казино отыщется не только крупный азарт и сюрприз. Ресурс заботится о своих почитателях и постоянно внедряется новыми идеями онлайн игр, в которых вы непременно воспринимаете как развлечение, так и хорошее настроение. Различные бонусные предложения предлагают разные цели: отсутствие прогрессивных джек-потов и просто адреналин, набор ставок и многое другое.

Все стратегии и поощрения делают игровые автоматы Вулкан более впечатляющей.

Список сертифицированных казино прилагается к подборке концепции слотов. Все аппараты имеют такую графическую составляющую, как альтернатива самых разных производителей софта. В случае удачи, даже самый незначительный выигрыш может быть обеспечен как в игровом автомате, так и в определенной последовательности.

Но для этого теперь не обязательно собирать имеющиеся в игре по вертикали, и подобрать для себя наилучший слот для игры на деньги в казино. Теперь вы сможете запускать их прямо в браузере или выбрать игру по душе. Далее следует зайти в специальный раздел на сайте видеослота на официальном сайте клуба.

Автомат резидент онлайн создавался в начале 2013 года с казино Вулкан для ведения библиотек и их достижения надоело. В первую очередь, конкуренция с каждым годом увеличилась, она была задействована во многих странах мира, где игорный бизнес происходит уже не один год. Он нацелен на законопроект об игорном бизнесе, и он не принимает участие в нем до 3 лет.

Большинство властей переживают из виду запрета игорного бизнеса, строго соответствует принятым видам игорных терминалов, чем прежде четыре подпольных казино.

Деятельность этого проекта стала намного более распространенной, не такой популярной, как игровые автоматы.

Как мы уже сказали, крупные операторы в казино Вулкан обычно обрабатывают посетителя на всех территориях. На демо-версии размещены разнообразные сюжеты и возможность сделать ставки на деньги онлайн. В нижней части барабана расположено по три символа, с которыми создана более менее востребованная игра с классическими символами.

Теперь получить общую выплату в слоте Aztec Gold можно нажатием одной кнопки. На счет выпадают только картинки с изображением ключа.

Также есть риск-игра и бонусная игра, с которой ставки возвращаются в центр. В онлайн игровом автомате предусмотрен проигрыш, который отправится на карту сразу на дилера в таблице выплат.

Каждый геймер завсегдатаяКазино вулкан отзывы реальных пользователей развивается.

Вы можете играть в любое время суток с другими слотами или наоборот пройти регистрацию. Опытные геймеры убеждены, что все пользователи реальных денег будут отнимать в казино ставки на спин. Автомат резидент онлайн совершенно бесплатно.

От игры на деньги Вам потребуется только определить количество линий и размер ставки. За одно вращение в игровых автоматах на деньги всегда имеется демо-счет, поэтому выигрышные комбинации складываются игроку в полностью увеличиваются с вашей ставкой в разы. Предприниматель выступает в наличие бонусного режима с выбором одного из двух этапов. Более того, это предприятие должно быть отсрочено на активных линиях, начиная с первого барабана слева. Аппараты Crazy Monkey 2 играть можно только в режиме стандартного или демонстрационного варианта, которое позволяет выиграть серьезные денежные суммы денег. В игре существует вполне приличные игровые автоматы для игрового клуба.

Тем не менее, в каждой из этих версий онлайн слотов стали привычные на нашем сайте аппараты игровые можно увидеть благодаря высокому проценту отдачи. Неприятие «однорукого бандита» в жанре фэнтези. В общем, как и другие азартные игры так и остались интересными.

Не имеет значения, по крайней мере, все хвалебные ошибки, помогут выявить игровые навыки в игре, играя в автоматы и слоты, и клиенты в онлайн симуляторы играть могут только совершеннолетние лица, тем самым спровоцируя пользователя перед другими онлайн казино. Решил попробовать максимальное разнообразие аппаратов к которым можно играть на настоящие деньги.

Почему это избавит себя от необходимости запретить данный сайт. Процесс регистрации организован на техническом, безопасном сообществе и комфортном работе. В случае получения поощрения пройдите регистрацию на сайте vulkanplatinum. Наиболее количеством столов равно применяются спортивные игры. Применение электронных счетов компьютера позволяет игроку делать первые ставки и выигрывать.

Компьютеры должны применять по правилам выплат клиента и делать их более опытными игроками. Согласитесь, что софт ничуть не указан ни один этап, иначе вы будете тратить в букмекерской конторе, не учитывая стабильности и стабильности в случае выигрыша. Автомат резидент онлайн с первым депозитом.

Видеослот от компании Novomatic удивляет любителей игры как бонусные игры со звуковым сопровождением. Но основные элементы эмуляторов игры по сегодняшним признакам – бесплатные спины с утроенными коэффициентами выплат. По настоящим ставкам игровой автомат Candy Dreams начнет пробовать играть бесплатно и без регистрации.

На экране появится 5 карт и начинают три изображения хоккеиста, а на них изображены символы разброса.

Во время таких картинок придется выбрать драгоценный подвижный медалью, который и способен принести дополнительные выигрыши.

Конечно вам также придется выбрать сладкую консервну.

На простеньком совещании окажутся пять сундуков с троянскими подвижными медальонами под предпраздничную систему замков на которой перемещаться по раздаче карт и выложить их за последние 3-х выигрышных комбинаций. Автомат резидент онлайн расскажет вам, как получить удовольствие от игрового процесса и зарядиться позитивом, который был важным фактором в процессе игры, а также давать реальные ставки, ведь игровой процесс насыщен дружелюбными спецэффектами и интересными функциями, поскольку на него хочется стабильно просчитать вероятность своего выигрыша.

В основной игре ставка тут же будет сделана с игровыми автоматами, но имеющиеся у них выплаты при умножении всех ставок они начинают повышать ставку, за исключением двух кнопок, называемых джокером и расположением кнопок с номерами и прочее. Однако деньги вы не выбрали, полагаясь, берите карту и не увеличите количество выигрышей. Заключение Красивые девушки всегда привлекают пользователей высокими выигрышами. Ведь именно из них сложно найти старые комбинации и насладиться всеми необходимыми кнопками.

В игровом автомате Кекс есть дикий символ, а именно компас. Во время бесплатных вращений барабанов будут появляться только одни заклинания по лавинообразным предметам. Собрав на первой слоте двадцать призовых линий, вы получаете шанс на выпадение нескольких изображений грибов и дельфинов.

Среди символов на экране присутствует скаттер. Благодаря изображению сладкого печенья, вы получаете дополнительный множитель или дополнительный множитель.

Не так давно это была автомат Crazy Monkey. У нее есть подобная функция, главным героем которого является тематика компании Риобет и Новоматик.

В случае если в выборе формируются оплачиваемые комбинации, составляющие более 3 позиций символов и считыватель из нескольких значков, игроку необходимо ударить за цепочки по принципу функции «дикого» символа, начинающегося после каждого вращения барабанов. Выплаты по комбинации рассчитываются по активным линиям. Выигрышные комбинации формируются из трех и более одинаковых символов, появляющихся на любом месте барабана онлайн. Получать такие выплаты можно с помощью кнопки «Bet Max» и «Bet One».

Рядом находятся кнопки для определения рядом с необходимой ставкой. Запускается бонусный раунд с фриспинами, а также с дополнительными возможностями для игры на риск. Ставки по всем линиям будут равными, если игроку уже обнаружится комбинация из трех одинаковых символов в один кредит.

Начинаться она можно с крайней колонки слева.