Антагонистические игры с непрерывными стратегиями. Основные понятия теории игр Решение антагонистической игры онлайн

Самым простым случаем, подробно разработанным в теории игр, является конечная парная игра с нулевой суммой (антагонистическая игра двух лиц или двух коалиций). Рассмотрим такую игру G , в которой участвуют два игрока А и В, имеющие противоположные интересы: выигрыш одного равен проигрышу другого. Так как выигрыш игрока А равен выигрышу игрока В с обратным знаком, мы можем интересоваться только выигрышем а игрока А. Естественно, А хочет максимизировать, а В - минимизировать а. Для простоты отождествим себя мысленно с одним из игроков (пусть это будет А) и будем его называть «мы», а игрока В - «противник» (разумеется, никаких реальных преимуществ для А из этого не вытекает). Пусть у нас имеется т возможных стратегий А 1 , A 2 , ..., А m , а у противника - n возможных стратегий В 1 , В 2 , ..; В n (такая игра называется игрой т × n ). Обозначим а ij наш выигрыш в случае, если мы пользуемся стратегией A i , а противник-стратегией B j .

Таблица 26.1

A i

B j

B 1

B 2

B n

A 1

A 2

A m

a 11

a 21

a m1

a 21

a m

a 1 n

a 2 n

a mn

Предположим, что для каждой пары стратегий Л<, В, выигрыш (или средний выигрыш) a , j нам известен. Тогда в принципе можно составить прямоугольную таблицу (матрицу), в которой перечислены стратегии игроков и соответствующие выигрыши (см. таблицу 26.1).

Если такая таблица составлена, то говорят, что игра G приведена к матричной форме (само по себе приведение игры к такой форме уже может составить трудную задачу, а иногда и практически невыполнимую, из-за необозримого множества стратегий). Заметим, что если игра приведена к матричной форме, то многоходовая игра фактически сведена к одноходовой - от игрока требуется сделать только один ход: выбрать стратегию. Будем кратко обозначать матрицу игры (a ij ).

Рассмотрим пример игры G (4×5) в матричной форме. В нашем распоряжении (на выбор) четыре стратегии, у противника - пять стратегий. Матрица игры дана в таблице 26.2

Давайте, поразмышляем о том, какой стратегией нам (игроку А) воспользоваться? В матрице 26.2 есть соблазнительный выигрыш «10»; нас так и тянет выбрать стратегию А 3 , при которой этот «лакомый кусок» нам достанется. Но постойте: противник тоже не дурак! Если мы выберем стратегию А 3 , он, назло нам, выберет стратегию В 3 , и мы получим какой-то жалкий выигрыш «1». Нет, выбирать стратегию А 3 нельзя! Как же быть? Очевидно, исходя из принципа осторожности (а он - основной принцип теории игр), надо выбрать

Таблица 26.2

B j

A i

B 1

B 2

B 3

B 4

B 5

A 1

A 2

A 3

A 4

ту стратегию, при которой наш минимальный выигрыш максимален. Это - так называемый «принцип минимакса»: поступай так, чтобы при наихудшем для тебя поведении противника получить максимальный выигрыш.

Перепишем таблицу 26.2 и в правом добавочном столбце запишем минимальное значение выигрыша в каждой строке, (минимум строки); обозначим его для i -й строки α i (см. таблицу 26.3).

Таблица 26.3

B j

A i

B 1

B 2

B 3

B 4

B 5

A 1

A 2

A 3

A 4

β j

Из всех значений α i (правый столбец) выделено наибольшее (3). Ему соответствует стратегия A 4 . Выбрав эту стратегию, мы, во всяком случае, можем быть уверены, что (при любом поведении противника) выиграем не меньше, чем 3. Эта величина - наш гарантированный выигрыш; ведя себя осторожно, меньше этого мы получить не можем (я, может быть, получим и больше). Этот выигрыш называется нижней ценой игры (или «максимином» - максимальный из минимальных выигрышей). Будем обозначать его а. В нашем случае α = 3.

Теперь станем на точку зрения противника и порассуждаем за него. Он ведь не пешка какая-нибудь, а тоже разумен! Выбирая стратегию, он хотел бы отдать поменьше, но должен рассчитывать на наше, наихудшее для него, поведение. Если он выберет стратегию В 1 , мы ему ответим А 3 , и он отдаст 10; если выберет B 2 - мы ему ответим А 2 , и он отдаст 8 и т. д. Припишем к таблице 26.3 добавочную нижнюю строку и в ней запишем максимумы столбцов β j . Очевидно, осторожный противник должен выбрать ту стратегию, при которой эта величина минимальна (соответствующее значение 5 выделено в таблице 26.3). Эта величина β - то значение выигрыша, больше которого заведомо не отдаст нам разумный противник. Она называется верхней ценой игры (или «минимаксом» - минимальный из максимальных выигрышей). В нашем примере β = 5 и достигается при стратегии противника B 3 .

Итак, исходя из принципа осторожности (перестраховочного правила «всегда рассчитывай на худшее!»), мы должны выбрать стратегию А 4 , а противник - стратегию В 3 . Такие стратегии называются «минимаксными» (вытекающими из принципа минимакса). До тех пор, пока обе стороны в нашем примере будут придерживаться своих минимаксных стратегий, выигрыш будет равен а 43 = 3.

Теперь представим себе на минуту, что мы узнали о том, что противник придерживается стратегии В 3 . А ну-ка, накажем его за это и выберем стратегию А 1 - мы получим 5, а это не так уж плохо. Но ведь противник - тоже не промах; пусть он узнал, что наша стратегия А 1 ; он тоже поторопится выбрать В 4 , сведя наш выигрыш к 2, и т. д. (партнеры «заметались по стратегиям»). Одним словом, минимаксные стратегии в нашем примере неустойчивы по отношению к информации о поведении другой стороны; эти стратегиине обладают свойством равновесия.

Всегда ли это так? Нет, не всегда. Рассмотрим пример с матрицей, данной в таблице 26.4.

В этом примере нижняя Цена игры равна верхней: α = β = 6. Что из этого вытекает? Минимаксные стратегии игроков А и В будут устойчивыми. Пока оба игрока их придерживаются, выигрыш равен 6. Посмотрим, что будет, если мы (А) узнаем, что противник (В)

Таблица 26.4

B j

A i

B 1

B 2

B 3

B 4

A 1

A 2

A 3

β j

держится стратегии B 2 ? А ровно ничего не изменится. Потому что любое отступление от стратегии А 2 может только ухудшить наше положение. Равным образом, информация, полученная противником, не заставит его отступить от своей стратегии В 2 . Пара стратегий А 2 , B 2 обладает свойством равновесия (уравновешенная пара стратегий), а выигрыш (в нашем случае 6), достигаемый при этой паре стратегий, называется «седловой точкой матрицы» 1). Признак наличия седловой точки и уравновешенной пары стратегий - это равенство нижней и верхней цены игры; общее значение α и β называется ценой игры. Мы будем обозначать его v :

α = β = v

Стратегии A i , B j (в данном случае А 2 , В 2 ), при которых этот выигрыш достигается, называются оптимальными чистыми стратегиями, а их совокупность - решением игры. Про саму игру в этом случае говорят, что она решается в чистых стратегиях. Обеим сторонам А и В можно указать их оптимальные стратегии, при которых их положение - наилучшее из возможных. А что игрок А при этом выигрывает 6, а игрок В - проигрывает 6,- что же, Таковы условия игры: они выгодны для А и невыгодны для В

1) Термин «седловая точка» взят из геометрии - так называется точка на поверхности, где одновременно достигается минимум по одной координате и максимум по другой.

У читателя может возникнуть вопрос: а почему оптимальные стратегии называются «чистыми»? Несколько забегая вперед, ответим на этот вопрос: бывают стратегии «смешанные», состоящие в том, что игрок применяет не одну какую-то стратегию, а несколько, перемежая их случайным образом. Так вот, если допустить кроме чистых еще и смешанные стратегии, всякая конечная игра имеет решение - точку равновесия. Но об атом речь еще впереди.

Наличие седловой точки в игре - это далеко не правило, скорее - исключение. Большинство игр не имеет седловой точки. Впрочем, есть разновидность игр, которые всегда имеют седловую точку и, значит, решаются в чистых стратегиях. Это - так называемые «игры с полной информацией». Игрой с полкой информацией называется такая игра, в которой каждый игрок при каждом личном ходе знает всю предысторию ее развития, т. е. результаты всех предыдущих ходов, как личных, так и случайных. Примерами игр с полной информацией могут служить: шашки, шахматы, «крестики и нолики» и т. п.

В теории игр доказывается, что каждая игра с полной информацией имеет седловую точку, и значит, решается в чистых стратегиях. В каждой игре с полной информацией существует пара оптимальных стратегий, дающая устойчивый выигрыш, равный цепе игры v . Если такая игра состоит только из личных ходов, то при применении каждым игроком своей оптимальной стратегии она должна кончаться вполне определенным образом - выигрышем, равным цене игры. А значит, если решение игры известно, самая игра теряет смысл!

Возьмем элементарный пример игры с полной информацией: два игрока попеременно кладут пятаки на круглый стол, выбирая произвольно положение центра монеты (взаимное перекрытие монет не разрешается). Выигрывает тот, кто положит последний пятак (когда места для других уже не останется). Легко убедиться, что исход этой игры, в сущности, предрешен. Есть определенная стратегия, обеспечивающая выигрыш тому из игроков, кто кладет монету первым. А именно, он должен первый раз положить пятак о центре стола, а затем на каждый ход противника отвечать симметричным ходом. Очевидно, как бы ни вел себя противник, ему не избежать проигрыша. Точно так же обстоит дело и с шахматами и вообще играми с полной информацией: любая из них, записанная в матричной форме, имеет седловую точку, и значит, решение в чистых стратегиях, а, следовательно, имеет смысл только до тех пор, пока это решение не найдено. Скажем, шахматная игра либо всегда кончается выигрышем белых, либо всегда - выигрышем черных, либо всегда - ничьей, только чем именно - мы пока не знаем (к счастью для любителей шахмат). Прибавим еще: вряд ли будем знать и в обозримом будущем, ибо число стратегий так огромно, что крайне трудно (если не невозможно) привести игру к матричной форме и найти в ней седловую точку.

А теперь спросим себя, как быть, если игра не имеет седловой точки: α ≠ β ? Ну что же, если каждый игрок вынужден выбрать одну - единственную чистую стратегию, то делать нечего: надо руководствоваться принципом минимакса. Другое дело, если можно скоп стратегии «смешивать», чередовать случайным образом с какими-то вероятностями. Применение смешанных стратегий мыслится таким образом: игра повторяется много раз; перед каждой партией игры, когда игроку предоставляется личный ход, он «передоверяет» свой выбор случайности, «бросает жребий», и берет ту стратегию, которая выпала (как организовать жребий, мы уже знаем из предыдущей главы).

Смешанные стратегии в теории игр представляют собой модель изменчивой, гибкой тактики, когда ни один из игроков не знает, как поведет себя противник в данной партии. Такая тактика (правда, обычно безо всяких математических обоснований) часто применяется в карточных играх. Заметим при этом, что лучший способ скрыть от противника свое поведение - это придать ему случайный характер и, значит, самому не знать заранее, как ты поступишь.

Итак, поговорим о смешанных стратегиях. Будем обозначать смешанные стратегии игроков А и В соответственно S A = (p 1 , р 2 , ..., p m ), S B = (q 1 , q 2 , …, q n ), где p 1 , p 2 , …, p m (образующие в сумме единицу) - вероятности применения игроком А стратегий А 1 , A 2 ,… , A m ; q 1 , q 2 , …, q n -вероятности применения игроком В стратегий В 1 , В 2 , ..., В n . В частном случае, когда все вероятности, кроме одной, равны нулю, а эта одна - единице, смешанная стратегия превращается в чистую.

Существует основная теорема теории игр: любая конечная игра двух лиц с нулевой суммой имеет, по крайней мере, одно решение - пару оптимальных стратегий, в общем случае смешанных
и соответствующую ценуv .

Пара оптимальных стратегий
образующих решение игры, обладает следующим свойством:если один из игроков придерживается своей оптимальной стратегии, то другому не может быть выгодно, отступать от своей. Эта пара стратегий образует в игре некое положение равновесия: один игрок хочет обратить выигрыш в максимум, другой - в минимум, каждый тянет в свою сторону и, при разумном поведении обоих, устанавливается равновесие и устойчивый выигрыш v. Если v > 0, то игра выгодна для нас, если v < 0 - для противника; при v = 0 игра «справедливая», одинаково выгодная для обоих участников.

Рассмотрим пример игры без седловой точки и приведем (без доказательства) ее решение. Игра состоит в следующем: два игрока А и В одновременно и не сговариваясь показывают один, два или три пальца. Выигрыш решает общее количество пальцев: если оно четное, выигрывает А и получает у В сумму, равную этому числу; если нечетное, то, наоборот, А платит В сумму, равную этому числу. Как поступать игрокам?

Составим матрицу игры. В одной партии у каждого игрока три стратегии: показать один, два или три пальца. Матрица 3×3 дана в таблице 26.5; в дополнительном правом столбце приведены минимумы строк, а в дополнительной нижней строке - максимумы столбцов.

Нижняя цена игры α = - 3 и соответствует стратегии A 1 . Это значит, что при разумном, осторожном поведении мы гарантируем, что не проиграем больше, чем 3. Слабое утешение, но все же лучше, чем, скажем, выигрыш - 5, встречающийся в некоторых клетках матрицы. Плохо нам, игроку А... Но утешимся:

положение противника, кажется, еще хуже: нижняя цена игры β = 4, т. е. при разумном поведении он отдаст нам минимум 4. В общем, положение не слишком хорошее - ни для той, ни для другой стороны. Но посмотрим: нельзя ли его улучшить? Оказывается, можно. Если каждая сторона будет применять не одну какую-то чистую стратегию, а смешанную, в которую

Таблица 26.5

B j

A i

B 1

B 2

B 3

A 1

A 2

A 3

β j

первая и третья входят с вероятностями 1/4, а вторая - с вероятностью 1/2, т. е.

то средний выигрыш будет устойчиво равен нулю (значит, игра «справедлива» и одинаково выгодна той и другой стороне). Стратегии
образуют решение игры, а ее ценаv = 0. Как мы это решение нашли? Это вопрос другой. В следующем параграфе мы покажем, как вообще решаются конечные игры.

Подход к решению матричных игр может быть обобщен на случай антагонистических игр, в которых платеж игроков задается в виде непрерывной функции (бесконечная антагонистическая игра).

Такая игра представляется как игра двух игроков, в которой игрок 1 выбирает число х из множества X, игрок 2 выбирает число у из множества 7, и после этого игроки 1 и 2 получают соответственно выигрыши U (х, у) и -U(x, у). Выбор определенного числа игроком означает применение его чистой стратегии, соответствующей этому числу.

По аналогии с матричными играми чистой нижней ценой игры можно назвать v { = max min U(x, у), а чистой верхней ценой игры -v 2 =

min max U{x, у). Тогда по аналогии можно считать, что если для какой-

у *

либо бесконечной антагонистической игры величины V и v 2 существуют и равны между собой («i =v 2 =v), то такая игра имеет решение в чистых стратегиях, т.е. оптимальной стратегией игрока 1 является выбор числа х° е X, а игрока 2 - числа у 0 е 7, при которых Щх { у 0) -v.

В этом случае v называется чистой ценой игры, а (х°, у 0) - седловой точкой бесконечной антагонистической игры.

Для матричных игр величины v x и v 2 всегда существуют, но в бесконечных антагонистических играх они могут и не существовать, т.е. бесконечная антагонистическая игра не всегда разрешима.

При формализации реальной ситуации в виде бесконечной антагонистической игры обычно выбирается единичный стратегический интервал - единичный промежуток, из которого игроки могут сделать выбор (х - число (стратегия), выбираемое игроком 1; -

число (стратегия), выбираемое игроком 2). Технически это упрощает решение, так как простым преобразованием любой интервал можно перевести в единичный и наоборот. Такая игра называется антагонистической игрой на единичном квадрате.

Для примера допустим, что игрок 1 выбирает число х из множества Х= , игрок 2 выбирает число у из множества Y= . После этого игрок 2 платит игроку 1 сумму Щх, у) -2х 2 -у 2 . Поскольку игрок 2 стремится минимизировать платеж игрока 1, то он определяет min (2х 2 - у 2) = 2х 2 - 1, т.е. при этому= 1. Игрок 1 стремится мак- тег

симизировать свой платеж, поэтому определяет maxi min Щх, у)1 =

xGX у ег

- max (2х 2 - 1) = 2- 1 = 1, который достигается при х = 1.

Таким образом, нижняя чистая цена игры v x - 1. Верхняя чистая

цена игры v 2 = min - min (2 - у 2) = 2 - 1 = 1, т.е. в этой

>ег хех у еу

игре v l =v 2 =l. Поэтому чистая цена игры v = 1, а седловая точка (х° = 1; у°=1).

Предположим теперь, что Хи Y- открытые интервалы, т.е. игрок 1 выбираетxeA"=(0; 1), игрок 2 выбирает уе 7= (0; 1). В этом случае, выбирая х, достаточно близкое к 1, игрок 1 будет уверен, что он получит выигрыш не меньше, чем число, близкое к»=1; выбирая у, близкое к 1, игрок 2 не допустит, чтобы выигрыш игрока 1 значительно превышал чистую цену игры v= 1.

Степень близости к цене игры может характеризоваться числом?>0. Поэтому в описываемой игре можно говорить об оптимальности чистых стратегий х° = 1, у 0 = 1 соответственно игроков 1 и 2 с точностью до произвольного числа?>0. Точка (х„ , у Е), где х е е X, у (. eY, в бесконечной антагонистической игре называется точкой z-равновесия (с.-седловой точкой) , если для любых стратегий хеТигрока 1,уе Тигро- ка 2 имеет место неравенство Щх, у.) - ? Щ x r , у (.) U(x t ., у) + ?. В этом случае стратегии х к. и у. называются с,-оптимальными стратегиями . Эти стратегии являются оптимальными с точностью до? в том смысле, что если отклонение от оптимальной стратегии никакой пользы игроку принести не может, то его отклонение от с-оптимальной стратегии может увеличить его выигрыш не более чем на е.

Если игра не имеет седловой точки (с-седловой точки), т.е. решения в чистых стратегиях, то оптимальные стратегии можно искать среди смешанных стратегий, в качестве которых используются функции распределения вероятностей применения игроками чистых стратегий.

Пусть F(x) - функция распределения вероятностей применения чистых стратегий игроком 1. Если число Е, - чистая стратегия игрока 1, то F(x) = P(q где P(q - Х) - вероятность того, что случайно выбранная чистая стратегия Е, не будет превосходить х. Аналогично рассматривается функция распределения вероятностей применения чистых стратегий г| игроком 2: Q(y) = Р(г .

Функции F(x) и Q(y) называются смешанными стратегиями соответственно игроков 1 и 2. Если Fx) и Q(y) дифференцируемы, то существуют их производные, обозначаемые соответственно через f{x) и q(y) (функции плотности распределения).

В общем случае дифференциал функции распределения dF{x ) выражает вероятность того, что стратегия с, находится в промежутке х Е, Аналогично для игрока 2: dQ(y) означает вероятность того, что его стратегия р находится в интервале у г| у+dy. Тогда платеж игрока 1 составит Щх, у) dF(x), а платеж игрока 2 равен Щх, у) dQ(y).

Средний платеж игрока 1 при условии, что игрок 2 применяет свою чистую стратегию у, можно получить, проинтегрировав платежи по всем возможным значениям х, т.е. на единичном интервале:

Средний платеж игрока 1 при условии, что оба игрока применяют свои смешанные стратегии F{x) и Q(y), будет равен

По аналогии с матричными играми определяются оптимальные смешанные стратегии игроков и цена игры: если пара смешанных стратегий F*(x ) и Q*(y) соответственно для игроков 1 и 2 являются оптимальными, то для любых смешанных стратегий F(x) и Q(y) справедливы соотношения:

Если игрок 1 отступает от своей стратегии F*(x), то его средний выигрыш не может увеличиться, но может уменьшиться из-за рациональных действий игрока 2. Если игрок 2 отступит от своей смешанной стратегии Q*(y), то средний выигрыш игрока 1 может увеличиться, но не уменьшиться, за счет более разумных действий игрока 1. Средний выигрыш E(F*, Q*), получаемый игроком 1 при применении игроками оптимальных смешанных стратегий, соответствует цене игры.

Тогда нижняя цена бесконечной антагонистической игры, решаемой в смешанных стратегиях, может быть определена как v x = шах

min Е (FQ), а верхняя цена игры как v 2 = min max Е(F, Q).

Q Q f

Если существуют такие смешанные стратегии F* (х) и Q* (у) соответственно для игроков 1 и 2, при которых нижняя и верхняя цены игры совпадают, то F*(x) и Q*(y) естественно назвать оптимальными смешанными стратегиями соответствующих игроков, a v=v x = v 2 - ценой игры.

В отличие от матричных игр решение бесконечной антагонистической игры существует не для всякой функции Щх, у). Но доказана теорема о том, что всякая бесконечная антагонистическая игра с непрерывной платежной функцией Щх, у) на единичном квадрате имеет решение (игроки имеют оптимальные смешанные стратегии), хотя общих методов для решения бесконечных антагонистических игр, в том числе непрерывных игр, не существует. Однако достаточно просто решаются антагонистические бесконечные игры с выпуклыми и вогнутыми непрерывными платежными функциями (они называются соответственно выпуклыми и вогнутыми играми).

Рассмотрим решение игр с выпуклой платежной функцией. Решение игр с вогнутой функцией выигрыша симметрично.

Выпуклой функцией/переменной х на интервале (а ; Ь) называется такая функция, для которой выполняется неравенство

где Хх и х 2 - любые две точки из интервала (а; b );

Х.1, А.2 > 0, причем +Х.2= 1.

Если для / ч * 0 Д 2 * 0, всегда имеет место строгое неравенство

то функция/называется строго выпуклой на (а; Ь).

Геометрически выпуклая функция изображает дугу, график которой расположен ниже стягивающей ее хорды. Аналитически выпуклость дважды дифференцируемой функции соответствует неотрицательности (а в случае строгой выпуклости - положительности) ее второй производной.

Для вогнутых функций свойства противоположны, для них должно выполняться неравенство/(/4X1 +А.2Х2) > Kf (xi) +)-if (х 2) (> при строгой вогнутости), а вторая производная/"(х)

Доказано , что непрерывная и строго выпуклая функция на замкнутом интервале принимает минимальное значение только в одной точке интервала. Если Щх, у) - непрерывная функция выигрышей игрока 1 на единичном квадрате и строго выпуклая по у для любого х, то имеется единственная оптимальная чистая стратегия у=у° е для игрока 2, цена игры определяется по формуле

а значение у 0 определяется как решение следующего уравнения:

Если функция Щх, у) не строго выпуклая по у, то у игрока 2 оптимальная чистая стратегия не будет единственной.

Симметричное свойство выполняется и для строго вогнутых функций. Если функция Щх, у) непрерывна по обоим аргументам и строго вогнута по х при любом у, то игрок 1 имеет единственную оптимальную стратегию.

Цена игры определяется по формуле

а чистая оптимальная стратегия х 0 игрока 1 определяется из уравнения

На основании этих свойств бесконечных антагонистических игр с выпуклой или вогнутой функциями выигрыша построена общая схема решения таких игр на единичном квадрате (х е , у е ). Приведем эту схему лишь для выпуклых игр , поскольку для вогнутых игр она симметрична.

1. Проверить функцию Щх, у) на выпуклость по у (вторая частная производная должна быть больше либо равна 0).

2. Определить у 0 из соотношения v- min max Щх, у) как значение

у, на котором достигается минимакс.

3. Найти решение уравнения v = U(x, у 0) и составить пары его решений Х и х 2 , для которых

4. Найти параметр а из уравнения


Параметр а определяет оптимальную стратегию игрока 1 и имеет смысл вероятности выбора им его чистой стратегии х х. Величина 1 - а имеет смысл вероятности выбора игроком 1 его чистой стратегии х 2 .

Покажем на примере использование этой схемы для решения игры такого вида. Пусть функция выигрыша в бесконечной антагонистической игре задана на единичном квадрате и равна Щх, у) = = (х - у) 2 =х 2 - 2ху ч-у 2 .

1. Эта функция непрерывна по х и у, и поэтому эта игра имеет решение. Функция Щх, у) строго выпукла по у, так как

Следовательно, игрок 2 имеет единственную чистую оптимальную стратегию у 0 .

2. Имеем v = min max (х - у) 2 . Для определения max (х 2 - 2ху Ч-у 2)

последовательно найдем первую и вторую частные производные пла- тежной функции по х:

Таким образом, функция U имеет минимум для любого у при х=у. Это значит, что при ху - возрастает, а ее максимум должен достигаться в одной из крайних точек х=0 или х= 1. Определим значения функции U в этих точках:

Тогда шах (х - у) 2 = тах {у 2 ; 1 - 2у+у 2 }. Сравнивая «внутренние»

максимумы, стоящие в фигурных скобках, легко заметить, что у 2 > 1 - - 2у+у 2 , если у > */ 2 и у 2 1 - 2у+у 2 , если у "/ 2 . Более наглядно это представляется графиком (рис. 2.5).


Рис. 2.5. Внутренние максимумы платежной функции U(х, у) = (х- у ) 2

Поэтому выражение (х - у) 2 достигает своего максимума при х=0, если у > 7 2 , и при х= 1, если у У 2:

Следовательно, v= min { min у 2 ; min (1 - у) 2 }. Каждый из вну-

тренних минимумов достигается при у= */ 2 и принимает значение У 4 . Таким образом, цена игры г = У 4 , а оптимальная стратегия игрока 2:

3. Определим оптимальную стратегию игрока 1 из уравнения U(x, у 0)=v, т.е. для данной игры (х - У 2) 2 =У 4 . Решением этого уравнения ЯВЛЯЮТСЯ Х| =0, х 2 = 1.

Для них выполняются условия


4. Определим параметр а, т.е. вероятность применения игроком 1 его чистой стратегии Х] = 0. Составим уравнение а-1 + (1 - а) (-1)=0, откуда а = У 2 . Таким образом, оптимальная стратегия игрока 1 состоит в выборе им своих чистых стратегий 0 и 1 с вероятностью 1 / 2 каждая. Задача решена.

Московский Энергетический Институт

(Технический Университет)

Отчёт по лабораторной работе

по теории игр

«Программа поиска оптимальных стратегий для парной антагонистической игры, заданной в матричной форме»

Выполнили студенты

группы А5-01

Ашрапов Далер

Ашрапова Ольга

Основные понятия теории игр

Теория игр разработана для разрешения конфликтных ситуаций , т.е. ситуаций, в которых сталкиваются интересы двух и более сторон, преследующих различные цели.

Если цели сторон прямо противоположны, то говорят об антагонистическом конфликте .

Игрой называется упрощённая формализованная модель конфликтной ситуации.

Однократный розыгрыш игры от начала до конца называется партией . Результатом партии являетсяплатёж (иливыигрыш ).

Партия состоит из ходов , т.е. выборов игроков из некоторого множества возможных альтернатив.

Ходы могут быть личные ислучайные .Личный ход , в отличие отслучайного , предполагает сознательный выбор игроком некоторого варианта.

Игры, в которых имеется хотя бы один личный ход, называются стратегическими .

Игры, в которых все ходы случайны, называются азартными .

При совершении личного хода говорят также о стратегии игрока, т.е. о правиле или совокупности правил, определяющих выбор игрока. При этом стратегия должна быть всеобъемлющей, т.е. выбор должен быть определён для любой возможной в ходе партии ситуации.

Задача теории игр – нахождение оптимальных стратегий игроков, т.е. стратегий, обеспечивающих им максимальный выигрыш или минимальный проигрыш.

Классификация теоретико-игровых моделей

Игру n лиц принято обозначать как, где
- множество стратегийi-го игрока,
- платёж игры.

В соответствии с данным обозначением можно предложить следующую классификацию теоретико-игровых моделей:

Дискретные (множества стратегийдискретны)

Конечные

Бесконечные

Непрерывные (множества стратегий непрерывны)

Бесконечные

n лиц (
)

Коалиционные (кооперативные)

Некоалиционные (некооперативные)

2-х лиц (парные)

Антагонистические (игры с нулевой суммой)

(интересы сторон противоположны, т.е. проигрыш одного игрока равен выигрышу другого)

Неантагонистические

С полной информацией (если игроку, делающему личный ход известна вся предыстория игры, т.е. все ходы противника)

С неполной информацией

С нулевой суммой (суммарный платёж равен нулю)

С ненулевой суммой

Одноходовые (лотереи)

Многоходовые

Матричное представление парной антагонистической игры

В данном пособии будем рассматривать антагонистические игры двух лиц , заданные в матричной форме. Это означает, что нам известно множество стратегий первого игрока (игрокA ){ A i }, i = 1,…, m и множество стратегий второго игрока (игрокB ){ B j }, j = 1,..., n , а также задана матрицаA = || a ij || выигрышей первого игрока. Поскольку речь идёт об антагонистической игре, то предполагается, что выигрыш первого игрока равен проигрышу второго. Считаем, что элемент матрицыa ij – выигрыш первого игрока при выборе им стратегииA i и ответе ему второго игрока стратегиейB j . Такую игру будем обозначать как
, гдеm - количество стратегий игрокаА, n - количество стратегий игрокаВ. В общем виде она может быть представлена следующей таблицей:

B 1

B j

B n

A 1

A i

A m

Пример 1

В качестве простейшего примера рассмотрим игру, партия которой состоит из двух ходов.

1-й ход : ИгрокА выбирает одно из чисел (1 или 2), не сообщая о своём выборе сопернику.

2-й ход : ИгрокВ выбирает одно из чисел (3 или 4).

Итог : Выборы игроковА иВ складываются. Если сумма чётная, тоВ выплачивает её значение игрокуА , если же нечётная - наоборот,А выплачивает сумму игрокуВ .

Данная игра может быть представлена в виде
следующим образом:

(выбор 3)

(выбор 4)

(выбор 1)

(выбор 2)

Нетрудно видеть, что данная игра является антагонистической, кроме того, она является игрой с неполной информацией, т.к. игроку В, совершающему личный ход, не известно, какой выбор сделал игрокА.

Как отмечалось выше, задача теории игр состоит в нахождении оптимальных стратегий игроков, т.е. стратегий, обеспечивающих им максимальный выигрыш или минимальный проигрыш. Этот процесс называется решением игры .

При решении игры в матричной форме следует проверить игру на наличие седловой точки . Для этого вводятся две величины:

– нижняя оценка цены игры и

– верхняя оценка цены игры.

Первый игрок, скорее всего, выберет ту стратегию, при которой он получит максимальный выигрыш среди всех возможных ответов второго игрока, а второй - наоборот, ту, которая минимизирует его собственный проигрыш, т.е. возможный выигрыш первого.

Можно доказать, что α ≤ V ≤ β , гдеV цена игры , т.е., вероятный выигрыш первого игрока.

Если выполняется соотношение α = β = V , то говорят, чтоигра имеет седловую точку
, ирешается в чистых стратегиях . Иными словами, имеется пара стратегий
, дающих игрокуА V .

Пример 2

Вернёмся к игре, рассмотренной нами в примере 1 и проверим её на наличие седловой точки.

(выбор 3)

(выбор 4)

(выбор 1)

(выбор 2)

Для данной игры
= -5,
= 4,
, следовательно, она не имеет седловой точки.

Ещё раз обратим внимание на то, что эта игра является игрой с неполной информацией. В данном случае можно лишь посоветовать игроку А выбрать стратегию, т.к. в этом случае он может получить наибольший выигрыш, правда, при условии выбора игрокомВ стратегии.

Пример 3

Внесём в правила игры из примера 1 некоторые изменения. Предоставим игроку В информацию о выборе игрокаА. Тогда уВ появятся две дополнительные стратегии:

- стратегия, выгодная дляА. Если выборА - 1, то В выбирает 3, если выборА - 2, то В выбирает 4;

- стратегия, не выгодная дляА. Если выборА - 1, то В выбирает 4, если выборА - 2, то В выбирает 3.

(выбор 3)

(выбор 4)

(выбор 1)

(выбор 2)

Эта игра - с полной информацией.

В данном случае
= -5,
= -5,
, следовательно, игра имеет седловую точку
. Данной седловой точке соответствуют две пары оптимальных стратегий:
и
. Цена игрыV = -5. Очевидно, что дляА такая игра невыгодна.

Примеры 2 и 3 являются неплохой иллюстрацией к следующей теореме, доказанной в теории игр:

Теорема 1

Всякая парная антагонистическая игра с полной информацией решается в чистых стратегиях.

Т.о. теорема 1 говорит о том, что любая игра двух лиц с полной информацией имеет седловую точку и существует пара чистых стратегий
, дающих игрокуА устойчивый выигрыш, равный цене игрыV .

Вслучае же отсутствия седловой точки, в качестве решения используются т.н.смешанные стратегии :, гдеp i и q j – вероятности выбора стратегийA i и B j первым и вторым игроками соответственно. Решением игры в данном случае является пара смешанных стратегий
, максимизирующих математическое ожидание цены игры.

Обобщением теоремы 1 на случай игры с неполной информацией служит следующая теорема:

Теорема 2

Любая парная антагонистическая игра имеет хотя бы одно оптимальное решение, т.е., пару в общем случае смешанных стратегий
, дающих игрокуА устойчивый выигрыш, равный цене игрыV , причёмα ≤ V ≤ β .

В частном случае, для игры с седловой точкой решение в смешанных стратегиях выглядит как пара векторов, в которых один элемент равен единице, а остальные равны нулю.

Рассмотрим конечную парную игру с нулевой суммой. Обозначим через a выигрыш игрока A , а через b – выигрыш игрока B . Так как a = –b , то при анализе такой игры нет необходимости рассматривать оба этих числа – достаточно рассматривать выигрыш одного из игроков. Пусть это будет, например, A . В дальнейшем для удобства изложения сторону A будем условно именовать "мы ", а сторону B – "противник ".

Пусть у нас имеется m возможных стратегийA 1 , A 2 , …, A m , а у противника n возможных стратегий B 1 , B 2 , …, B n (такая игра называется игрой m×n ). Предположим, что каждая сторона выбрала определенную стратегию: мы выбрали A i , противник B j . Если игра состоит только из личных ходов, то выбор стратегий A i и B j однозначно определяет исход игры – наш выигрыш (положительный или отрицательный). Обозначим этот выигрыш через a ij (выигрыш при выборе нами стратегии A i , а противником – стратегии B j ).

Если игра содержит кроме личных случайные ходы, то выигрыш при паре стратегий A i , B j есть величина случайная, зависящая от исходов всех случайных ходов. В этом случае естественной оценкой ожидаемого выигрыша является математическое ожидание случайного выигрыша . Для удобства будем обозначать через a ij как сам выигрыш (в игре без случайных ходов), так и его математическое ожидание (в игре со случайными ходами).

Предположим, что нам известны значения a ij при каждой паре стратегий. Эти значения можно записать в виде матрицы, строки которой соответствуют нашим стратегиями (A i ), а столбцы – стратегиям противника (B j ):

B j A i B 1 B 2 B n
A 1 a 11 a 12 a 1n
A 2 a 21 a 22 a 2n
A m a m 1 a m 2 a mn

Такая матрица называется платежной матрицей игры или просто матрицей игры .

Заметим, что построение платежной матрицы для игр с большим количеством стратегий может представлять непростую задачу. Например, для шахматной игры число возможных стратегий так велико, что построение платежной матрицы является практически неосуществимым. Однако, в принципе любая конечная игра может быть приведена к матричной форме.

Рассмотрим пример 1 антагонистической игры 4×5. В нашем распоряжении есть четыре стратегии, у противника – пять стратегий. Матрица игры следующая:

B j A i B 1 B 2 B 3 B 4 B 5
A 1
A 2
A 3
A 4

Какой стратегией нам (т.е. игроку A ) воспользоваться? Какую бы мы ни выбрали стратегию, разумный противник ответит на нее той стратегией, для которой наш выигрыш будет минимальным. Например, если мы выберем стратегию A 3 (соблазнившись выигрышем 10), противник в ответ выберет стратегию B 1 , и наш выигрыш будет всего лишь 1. Очевидно, исходя из принципа осторожности (а он – основной принцип теории игр), надо выбирать ту стратегию, при которой наш минимальный выигрыш максимален .

Обозначим через α i минимальное значение выигрыша для стратегии A i :

и добавим к матрице игры столбец, содержащий эти значения:

B j A i B 1 B 2 B 3 B 4 B 5 минимум в строках α i
A 1
A 2
A 3
A 4 максимин

Выбирая стратегию, мы должны предпочесть ту, для которой значение α i максимально. Обозначим это максимальное значение через α :

Величина α называется нижней ценой игры или максимином (максимум минимального выигрыша). Стратегия игрока A , соответствующая максимину α , называется максиминной стратегией .

В данном примере максимин α равен 3 (соответствующая клетка в таблице выделена серым цветом), а максиминная стратегия –A 4 . Выбрав эту стратегию, можем быть уверены, что при любом поведении противника выиграем не меньше, чем 3 (а может быть и больше при "неразумном" поведении противника"). Эта величина – наш гарантированный минимум, который мы можем себе обеспечить, придерживаясь наиболее осторожной ("перестраховочной") стратегии.

Теперь проведем аналогичные рассуждения за противника B B A B 2 – мы ему ответим A .

Обозначим через β j A B ) для стратегии A i :



β j β :

7.ЧТО НАЗЫВАЕТСЯ ВЕРХНЕЙ ЦЕННОЙ ИГРЫТеперь проведем аналогичные рассуждения за противника B . Он заинтересован в том, чтобы обратить наш выигрыш в минимум, то есть отдать нам поменьше, но должен рассчитывать на наше, наихудшее для него, поведение. Например, если он выберет стратегию B 1 , то мы ответим ему стратегией A 3 , и он отдаст нам 10. Если выберет B 2 – мы ему ответим A 2 , и он отдаст 8 и т. д. Очевидно, осторожный противник должен выбрать ту стратегию, при которой наш максимальный выигрыш будет минимален .

Обозначим через β j максимальные значения в столбцах платежной матрицы (максимальный выигрыш игрока A , или, что то же самое, максимальный проигрыш игрока B ) для стратегии A i :

и добавим к матрице игры строку, содержащую эти значения:

Выбирая стратегию, противник предпочтет ту, для которой значение β j минимально. Обозначим его через β :

Величина β называется верхней ценой игры или минимаксом (минимум максимального выигрыша). Соответствующая минимаксу стратегия противника (игрока B ), называется минимаксной стратегией .

Минимакс – это значение выигрыша, больше которого заведомо не отдаст нам разумный противник (иначе говоря, разумный противник проиграет не больше, чем β ). В данном примере минимакс β равен 5 (соответствующая клетка в таблице выделена серым цветом) и достигается он при стратегии противника B 3 .

Итак, исходя из принципа осторожности («всегда рассчитывай на худшее!»), мы должны выбрать стратегию A 4 , а противник – стратегию B 3 . Принцип осторожности является в теории игр основным и называется принципом минимакса .

Рассмотрим пример 2 . Пусть игроки A и В одновременно и независимо друг от друга записывают одно из трех чисел: либо «1», либо «2», либо «3». Если сумма записанных чисел оказывается четной, то игрок B платит игроку A эту сумму. Если сумма нечетная, то эту сумму выплачивает игрок A игроку В .

Запишем платежную матрицу игры, и найдем нижнюю и верхнюю цены игры (номер стратегии соответствует записанному числу):

Игрок A должен придерживаться максиминной стратегии A 1 , чтобы выиграть не меньше –3 (то есть чтобы проиграть не больше 3). Минимаксная стратегия игрока B – любая из стратегий B 1 и B 2 , гарантирующая, что он отдаст не более 4.

Тот же самый результат мы получим, если будем записывать платежную матрицу с точки зрения игрока В . Фактически, эта матрица получается путем транспонирования матрицы, построенной с точки зрения игрока A , и изменения знаков элементов на противоположный (так как выигрыш игрока A – это проигрыш игрока В ):

Исходя из этой матрицы следует, что игрок B должен придерживаться любой из стратегий B 1 и B 2 (и тогда он проиграет не более 4), а игрок A – стратегии A 1 (и тогда он проиграет не более 3). Как видно, результат в точности совпадает с полученным выше, поэтому при анализе не важно, с точки зрения какого игрока мы его проводим.

8 ЧТО НАЗЫВАЕТСЯ ЦЕННОВОЙ ИГРОЙ.

9.В ЧЕМ СОСТОЙТ ПРИНЦЕП МИНИМАКСА.2. Нижняя и верхняя цена игры. Принцип минимакса

Рассмотрим матричную игру типа с платежной матрицей

Если игрок А выберет стратегию А i , то все его возможные выигрыши будут элементами i -й строки матрицы С . В наихудшем для игрока А случае, когда игрокВ применяет стратегию, соответствующую минимальному элементу этой строки, выигрыш игрока А будет равен числу .

Следовательно, для получения наибольшего выигрыша, игроку А нужно выбирать ту из стратегий, для которой число максимально .

Тесты для итогового контроля

1. Антагонистическая игра может быть задана:

а) множеством стратегий обоих игроков и седловой точкой.

б) множеством стратегий обоих игроков и функцией выигрыша первого игрока.

2. Цена игры существует для матричных игр в смешанных стратегиях всегда.

а) да.

3.Если в матрице выигрышей все столбцы одинаковы и имеют вид (4 5 0 1), то какая стратегия оптимальна для 1-го игрока?

а) первая.

б)вторая.

в)любая из четырех.

4.Пусть в матричной игре одна из смешанных стратегий 1-го игрока имеет вид (0.3, 0.7), а одна из смешанных стратегий 2-го игрока имеет вид (0.4, 0, 0.6). Какова размерность этой матрицы?

а) 2*3.

в) другая размерность.

5. Принцип доминирования позволяет удалять из матрицы за один шаг:

а) целиком строки.

б) отдельные числа.

6.В графическом методе решения игр 2*m непосредственно из графика находят:

а) оптимальные стратегии обоих игроков.

б) цену игры и оптимальные стратегии 2-го игрока.

в) цену игры и оптимальные стратегии 1-го игрока.

7.График нижней огибающей для графического метода решения игр 2*m представляет собой в общем случае:

а) ломаную.

б) прямую.

в) параболу.

8. В матричной игре 2*2 две компоненты смешанной стратегии игрока:

а) определяют значения друг друга.

б) независимы.

9. В матричной игре элемент aij представляет собой:

а) выигрыш 1-го игрока при использовании им i-й стратегии, а 2-м – j-й стратегии.

б) оптимальную стратегию 1-го игрока при использовании противником i-й или j-й стратегии.


в) проигрыш 1-го игрока при использовании им j-й стратегии, а 2-м – i-й стратегии.

10.Элемент матрицы aij соответствует седловой точке. Возможны следующие ситуации:

а) этот элемент строго меньше всех в строке.

б) этот элемент второй по порядку в строке.

11. В методе Брауна-Робинсон каждый игрок при выборе стратегии на следующем шаге руководствуется:

а) стратегиями противника на предыдущих шагах.

б) своими стратегиями на предыдущих шагах.

в) чем-то еще.

12. По критерию математического ожидания каждый игрок исходит из того, что:

а) случится наихудшая для него ситуация.

в) все или некоторые ситуации возможны с некоторыми заданными вероятностями.

13. Пусть матричная игра задана матрицей, в которой все элементы отрицательны. Цена игры положительна:

б) нет.

в) нет однозначного ответа.

14. Цена игры - это:

а) число.

б) вектор.

в) матрица.

15.Какое максимальное число седловых точек может быть в игре размерности 5*5 (матрица может содержать любые числа) :

16. Пусть в матричной игре размерности 2*3 одна из смешанных стратегий 1-го игрока имеет вид (0.3, 0.7), а одна из смешанных стратегий 2-го игрока имеет вид (0.3, x, 0.5). Чему равно число x?

в) другому числу.

17. Для какой размерности игровой матрицы критерий Вальда обращается в критерий Лапласа?

в)только в других случаях.

18. Верхняя цена игры всегда меньше нижней цены игры.

б) нет.

б) вопрос некорректен.

19. Какие стратегии бывают в матричной игре:

а) чистые.

б) смешанные.

в) и те, и те.

20. Могут ли в какой-то антагонистической игре значения функции выигрыша обоих игроков для некоторых значений переменных равняться 1?

а) всегда.

б) иногда.

в) никогда.

21.Пусть в матричной игре одна из смешанных стратегий 1-го игрока имеет вид (0.3, 0.7), а одна из смешанных стратегий 2-го игрока имеет вид (0.4, 0.1,0.1,0.4). Какова размерность этой матрицы?

в) иная размерность.

22. Принцип доминирования позволяет удалять из матрицы за один шаг:

а) целиком столбцы,

б) отдельные числа.

в) подматрицы меньших размеров.

23. В матричной игре 3*3 две компоненты смешанной стратегии игрока:

а) определяют третью.

б) не определяют.

24. В матричной игре элемент aij представляет собой:

а) проигрыш 2-го игрока при использовании им j-й стратегии, а 2-м – i-й стратегии .

б) оптимальную стратегию 2-го игрока при использовании противником i-й или j-й стратегии,

в) выигрыш 1-го игрока при использовании им j-й стратегии, а 2-м – i-й стратегии,

25. Элемент матрицы aij соответствует седловой точке. Возможны следующие ситуации:

а) этот элемент больше всех в столбце.

б) этот элемент строго больше всех по порядку в строке.

в) в строке есть элементы и больше, и меньше, чем этот элемент.

26. По критерию Вальда каждый игрок исходит из того, что:

а) случится наиболее плохая для него ситуация.

б) все ситуации равновозможны.

в) все ситуации возможны с некоторыми заданными вероятностями.

27. Нижняя цена меньше верхней цены игры:

б) не всегда.

в) никогда.

28. Сумма компонент смешанной стратегия для матричной игры всегда:

а) равна 1.

б) неотрицательна.

в) положительна.

г) не всегда.

29. Пусть в матричной игре размерности 2*3 одна из смешанных стратегий 1-го игрока имеет вид (0.3, 0.7), а одна из смешанных стратегий 2-го игрока имеет вид (0.2, x, x). Чему равно число x?